

The Agilent E8257D is a fully synthesized signal generator with high output power, low phase noise, and optional ramp sweep capability.

Specifications apply over a 0 to $55^{\circ} \mathrm{C}$ range, unless otherwise stated, and apply after a 45 minute warm-up time. Supplemental characteristics, denoted as typical, nominal, or measured, provide additional (non-warranted) information at $25^{\circ} \mathrm{C}$, which may be useful in the application of the product.

Definitions

Specifications (spec): Represents warranted performance for instruments with a current calibration.

Typical (typ): Represents characteristic performance which is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance which is non-warranted. Represents the value of a parameter that is most likely to occur; the mean and/or mode of all measurements of a parameter.

Measured: Represents characteristic performance which is non-warranted. Represents the value of a parameter measured on an instrument during design verification.

Table of Contents

Specifications 3
Frequency 3
Step (digital) sweep 4
Ramp (analog) sweep 4
Output 5
Spectral purity 8
Frequency modulation 13
Phase modulation 13
Amplitude modulation 14
External modulation inputs 15
Internal modulation source 15
Pulse modulation 16
Narrow pulse modulation 16
Internal pulse generator 17
Simultaneous modulation 17
Remote programming 18
General specifications 19
Input/Output Descriptions 20
Front panel connectors. 20
Rear panel connectors 20
Options, Accessories, and Related Products 22
Web Resources 23
Related Agilent Literature 23

Specifications

Frequency

[^0]| Step (digital) sweep | Operating modes | - Step sweep of
 - List sweep of f | frequency or amplitude or requency or amplitude or | both (start to stop) both (arbitrary list) |
| :---: | :---: | :---: | :---: | :---: |
| | Sweep range | | | |
| | Frequency sweep Amplitude sweep | Within instrume | $n t$ frequency range | |
| | | Within attenuator hold range (see "Output" section) | | |
| | Dwell time | 1 ms to 60 s | | |
| | Number of points | 2 to 65535 (step sweep) | | |
| | | 2 to 1601 per table (list sweep) | | |
| | Triggering | Auto, external, single, or GPIB | | |
| | Settling time | | | |
| | Frequency Amplitude | $<8 \mathrm{~ms} \mathrm{(typ)}{ }^{1}$$<5 \mathrm{~ms}$ (typ) | | |
| | | | | |
| Ramp (analog) sweep $\left(\right.$ Option 007) ${ }^{2}$ | Operating modes | - Synthesized frequency sweep
 (start/stop), (center/span), (swept CW)
 - Power (amplitude) sweep (start/stop)
 - Manual sweep
 RPG control between start and stop frequencies
 - Alternate sweep
 Alternates successive sweeps between current and stored states | | |
| | | | | |
| | | Settable from minimum ${ }^{3}$ to full range | | |
| | Maximum sweep rate | Start frequency | Maximum sweep rate | Max span for 100 ms sweep |
| | | $\begin{aligned} & 250 \mathrm{kHz} \text { to }<0.5 \mathrm{GHz} \\ & 0.5 \text { to }<1 \mathrm{GHz} \end{aligned}$ | $25 \mathrm{MHz} / \mathrm{ms}$ | 2.5 GHz |
| | | | $50 \mathrm{MHz} / \mathrm{ms}$ | 5 GHz |
| | | 1 to $<2 \mathrm{GHz}$ | $100 \mathrm{MHz} / \mathrm{ms}$ | 10 GHz |
| | | 2 to < 3.2 GHz | $200 \mathrm{MHz} / \mathrm{ms}$ | 20 GHz |
| | | $\geq 3.2 \mathrm{GHz}$ | $400 \mathrm{MHz} / \mathrm{ms}$ | 40 GHz |
| | Frequency accuracy | $\pm 0.05 \%$ of span \pm timebase (at 100 ms sweep time, for sweep spans less than maximum values given above) Accuracy improves proportionally as sweep time increases ${ }^{4}$ | | |
| | Sweep time intervals) | (forward sweep, not including bandswitch and retrace | | |
| | Manual mode settableResolution | 10 ms to 200 seconds | | |
| | | Set to minimum value determined by maximum sweep rate and 8757D setting | | |
| | Resolution Auto mode | | | |
| | Triggering | Auto, external, single, or GPIB | | |
| | Markers | 10 independent continuously variable frequency markers | | |
| | Display Functions | Z-axis intensity or RF amplitude pulse | | |
| | | Two PSG's can synchronously track each other, with independent control of start/stop frequencies | | |
| | Two-tone (master/slave) measurements ${ }^{5}$ | | | |
| | Network analyzer compatibility | Fully compatible with Agilent 8757D scalar network analyzer ${ }^{6}$ | | |
| | | Also useable with Agilent 8757A/C/E scalar network analyzers for making basic swept measurements. ${ }^{7}$ | | |

1. 19 ms (typ) when stepping from greater than 3.2 GHz to less than 3.2 GHz .
2. During ramp sweep operation, AM, FM, phase modulation, and pulse modulation are useable but performance is not guaranteed.
3. Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than [0.00004% of carrier frequency or 140 Hz] [sweep time in seconds]. Actual span will always be displayed correctly.
4. Typical accuracy for sweep times $>100 \mathrm{~ms}$ can be calculated from the equation: [(0.005\% of span)/(sweep time in seconds)] \pm timebase. Accuracy is not specified for sweep times < 100 ms .
5. For master/slave operation use Agilent part \#8120-8806 master/slave interface cable.
6. When measuring low-pass devices in AC mode, dynamic range may be reduced up to 10 dB below 3.2 GHz . An external highpass filter may be required to remove 27 kHz pulse source feed-through (For instruments operating from 10 MHz to 20 GHz with 3.5 mm connectors, use Bias Tee part number 5086-7322. For instruments operating from 10 MHz to 50 GHz with 2.4 mm connectors, use Bias Tee part number 5086-7484.)
7. GPIB system interface is not supported with 8757 A/C/E, only with 8757 . As a result, some features of $8757 \mathrm{~A} / \mathrm{C} / \mathrm{E}$, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.

Output

Power ${ }^{1}$ (dBm)		
Frequency range	Standard	Option 1EA spec. (typ)
Option 520:		
250 kHz to 3.2 GHz	-20 to $+15^{5}$	-20 to $+16(+19)$
250 kHz to 3.2 GHz with Option UNW	-20 to +11	-20 to $+11(+14)$
250 kHz to 3.2 GHz with Option 1EH	-20 to $+13^{2}$	-20 to $+13(+16)^{2}$
250 kHz to 3.2 GHz with Options UNW and 1EH	-20 to $+10^{2}$	-20 to $+10(+13)^{2}$
> 3.2 Ghz to 5.2 GHz	-20 to $+15^{5}$	-20 to $+22(+23)^{4}$
> 5.2 Ghz to 12 GHz	-20 to $+15^{5}$	-20 to $+23(+24)^{4}$
> 12 Ghz to 20 GHz	-20 to $+15^{5}$	-20 to $+21(+23)^{4}$
Options 532 and 540:		
250 kHz to 3.2 GHz	-20 to $+11^{5}$	-20 to $+15(+18)$
250 kHz to 3.2 GHz with Option UNW	-20 to +9	-20 to $+10(+13)$
250 kHz to 3.2 GHz with Option 1EH	-20 to +9	-20 to $+12(+15)^{2}$
250 kHz to 3.2 GHz with Options UNW and 1EH	-20 to $+9^{2}$	-20 to $+9(+12)^{2}$
>3.2 to 17 GHz	-20 to $+11^{5}$	-20 to $+19(+21)^{4}$
>17 to 37 GHz	-20 to $+11^{5}$	-20 to $+16(+19)^{4}$
>37 to 40 GHz	-20 to $+11^{5}$	-20 to $+14(+17)$
Options 550 and 567:		
250 kHz to 3.2 GHz	-20 to +5	-20 to $+14(+17)$
250 kHz to 3.2 GHz with Option UNW	-20 to +5	-20 to $+9(+12)$
250 kHz to 3.2 GHz with Option 1EH	-20 to +5	-20 to $+11(+14)^{2}$
250 kHz to 3.2 GHz with Options UNW and 1EH	-20 to +5	-20 to $+8(+11)^{2}$
>3.2 to 10 GHz	-20 to +5	-20 to $+14(+21)$
>10 to 20 GHz	-20 to +5	-20 to $+14(+17)$
>20 to 30 GHz	-20 to +5	-20 to $+11(+17)$
>30 to 65 GHz	-20 to +5	-20 to $+11(+14)$
>65 to 67 GHz	-20 to +5	-20 to $+10(+14)$
> 67 to 70 GHz	-20 to +5 (typ)	-20 to +8 (typ)
Option 520 with step attenuator (Option 1E1):		
250 kHz to 3.2 GHz	-135 to $+13^{5}$	-135 to +15 (+18)
250 kHz to 3.2 GHz with Option UNW	-135 to +10	-135 to +10 (+13)
250 kHz to 3.2 GHz with Option 1EH	-135 to $+11^{3}$	-135 to $+12(+15)^{2}$
250 kHz to 3.2 GHz with Options UNW and 1EH	-135 to $+9^{2}$	-135 to $+9(+12)^{2}$
> 3.2 GHz to 10 GHz	-135 to $+13^{5}$	-135 to $+21(+22)^{4}$
> 10 GHz to 20 GHz	-135 to $+13^{5}$	-135 to $+19(+20)^{4}$
Options 532 and 540 with step attenuator (Option 1E1):		
250 kHz to 3.2 GHz	-135 to $+9^{5}$	-135 to +14 (+17)
250 kHz to 3.2 GHz with Option UNW	-135 to +7	-135 to $+9(+12)$
250 kHz to 3.2 GHz with Option 1EH	-135 to +7	-135 to $+11(+14)^{2}$
250 kHz to 3.2 GHz with Options UNW and 1EH	-135 to $+7^{3}$	-135 to $+8(+11)^{2}$
>3.2 to 17 GHz	-135 to $+9^{5}$	-135 to $+17(+20)^{4}$
>17 to 37 GHz	-135 to $+9^{5}$	-135 to $+14(+17)^{4}$
>37 to 40 GHz	-135 to $+9^{5}$	-135 to +12 (+16)
Options 550 and 567 with step attenuator (Option 1E1):		
250 kHz to 3.2 GHz	-110 to +3	-110 to +13 (+16)
250 kHz to 3.2 GHz with Option UNW	-110 to +3	-110 to $+8(+11)$
250 kHz to 3.2 GHz with Option 1EH	-110 to +3	-110 to $+10(+13)^{2}$
250 kHz to 3.2 GHz with Options UNW and 1EH	-110 to +3	-110 to $+7(+10)^{2}$
> 3.2 to 10 GHz	-110 to +3	-110 to $+13(+20)$
>10 to 20 GHz	-110 to +3	-110 to $+13(+16)$
>20 to 30 GHz	-110 to +3	-110 to $+9(+16)$
>30 to 65 GHz	-110 to +3	-110 to $+9(+12)$
>65 to 67 GHz	-110 to +3	-110 to +8 (+12)
>67 to 70 GHz	-110 to +3 (typ)	-110 to +6 (typ)

[^1]Step attenuator ${ }^{1}$ (Option 1E1)
Options 520, 532, and 540
0 dB and 5 dB to 115 dB in 10 dB steps
Options 550 and 567
0 dB to 90 dB in 10 dB steps
Maximum available power (measured)

Attenuator hold range				
Minimum	From -20 dBm to maximum specified output power with step attenuator in 0 dB position. Can be offset using Option 1E1 attenuator.			
Amplitude switching speed ${ }^{2}$				
ALC on or off (without power search)		< 3 ms (typ)		
Level accuracy ${ }^{3}$ (dB)				
Frequency	> +10 dBm	+10 to 0 dBm	0 to - $\mathbf{1 0} \mathbf{d B m}$	-10 to - 20 dBm
250 kHz to 2 GHz	± 0.6	± 0.6	± 0.6	± 1.4
$>2 \mathrm{GHz}$ to 20 GHz	± 0.8	± 0.8	± 0.8	± 1.2
>20 to 40 GHz	± 1.0	± 0.9	± 0.9	± 1.3
>40 to 50 GHz	---	± 1.3	± 0.9	± 1.2
>50 to 67 GHz	---	± 1.5	± 1.0	± 1.2 (typ)

1. The step attenuator provides coarse power attenuation to achieve low power levels. Fine power level adjustment is provided by the ALC (Automatic Level Control) within the attenuator hold range.
2. To within 0.1 dB of final amplitude within one attenuator range. Add 10 to 50 ms when using power search.
3. Specifications apply in CW and list/step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range with the ALC on. Degradation outside this range, for power levels $>-10 \mathrm{dBm}$, is typically $<0.3 \mathrm{~dB}$. In ramp sweep mode (with Option 007), specifications are typical. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz . Specifications do not apply above the maximum specified power.

Level accuracy with step attenuator (Option 1E1) ${ }^{1}$ (dB)					
Frequency	+10 dBm	+10 to 0 dBm	0 to -10 dBm	-10 to -70 dBm	-70 to -90 dBm
250 kHz to 2 GH	± 0.6	± 0.6	± 0.6	± 0.7	± 0.8
>2 to 20 GHz	± 0.8	± 0.8	± 0.8	± 0.9	± 1.0
>20 to 40 GHz	± 1.0	± 0.9	± 0.9	± 1.0	± 2.0
>40 to 50 GHz	---	± 1.3	± 0.9	± 1.5	± 2.5
>50 to 67 GHz	---	± 1.5	± 1.0	± 1.5 (typ)	± 2.5 (typ)

Level accuracy (measured)

Resolution	0.01 dB
Temperature stability	$0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) ${ }^{2}$
User flatness correction	2 to 1601 points/table
Number of points	Up to 10,000, memory limited Number of tables
Arbitrary, within attenuator range	
Entry modes	Remote power meter ${ }^{3}$, remote bus, manual (user edit/view)

1. Specifications apply in CW and list/step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range, with attenuator hold off (normal operating mode). Degradation outside this range, for ALC power levels >-10 dBm, is typically $<0.3 \mathrm{~dB}$. In ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz . Specifications do not apply above the maximum specified power.
2. Options 550 and $567: 0.03 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) above 2 GHz .
3. Compatible with Agilent EPM Series (E4418B and E4419B) power meters.

Output impedance	50Ω (nom)
SWR (internally leveled)	
250 kHz to 2 GHz	$<1.4: 1$ (typ)
$>2 \mathrm{GHz}$ to 20 GHz	$<1.8: 1$ (typ)
$>20 \mathrm{GHz}$ to 40 GHz	$<2.0: 1$ (typ)
$>40 \mathrm{GHz}$ to 67 GHz$)$	
Leveling modes	Internal leveling, external detector leveling, millimeter source module, ALC off
External detector leveling	
Range	-0.2 mV to -0.5 V (nom) (-36 dBm to
	+4 dBm using Agilent $33330 \mathrm{D} / \mathrm{E}$ detector)
Bandwidth	Selectable 0.1 to 100 kHz (nom) Maximum reverse power

Spectral purity

Harmonics 1	(dBc at +10 dBm or maximum specified
	output power, whichever is lower)
$<10 \mathrm{MHz}$	-28 dBc (typical below 1 MHz$)$
10 MHz to 2 GHz	$-30 \mathrm{dBc}^{2,3}$
10 MHz to 2 GHz (with Option 1EH filters on)	$-55 \mathrm{dBc}^{4}$
$>2 \mathrm{GHz}$ to 20 GHz	-55 dBc
$>20 \mathrm{GHz}$ to 67 GHz (Option 532,540,550 \& 567)	-50 dBc (typical)

Harmonics (measured)

[^2]| Sub-harmonics ${ }^{1}$ | | (dBc at +10 dBm or maximum specified output power, whichever is lower) | | |
| :---: | :---: | :---: | :---: | :---: |
| 250 kHz to 10 GHz | | | | |
| $>10 \mathrm{GHz}$ to 20 GHz | | <-60 dBc | | |
| $>20 \mathrm{GHz}$ | | $<-50 \mathrm{dBc}$ | | |
| Non-harmonics ${ }^{2}$ | | (dBc at +10 dBm or maximum specified output power, whichever is lower, for offsets $>3 \mathrm{kHz}$ [$>300 \mathrm{~Hz}$ with Option UNX or UNR]) | | |
| Frequency | | Spec | Typical | |
| 250 kHz to 250 MHz | | -65 | -72 for > 10 kHz offsets | |
| > 250 MHz to 1 GHz | | -80 | -88 | |
| >1 to 2 GHz | | -74 | -82 | |
| >2 to 3.2 GHz | | -68 | -76 | |
| >3.2 to 10 GHz | | -62 | -70 | |
| >10 to 20 GHz | | -56 | -64 | |
| >20 to 40 GHz | | -50 | -58 | |
| $>40 \mathrm{GHz}$ | | -44 | -52 | |
| SSB phase noise (CW) ${ }^{3}$ | | Offset from carrier (dBc/Hz) | | |
| Frequency | | 20 kHz | 20 kHz (typical) | |
| 250 kHz to $250 \mathrm{MHz}^{4}$ | | -130 | -134 | |
| >250 to $500 \mathrm{MHz}^{4}$ | | -134 | -138 | |
| $>500 \mathrm{MHz}$ to $1 \mathrm{GHz}^{4}$ | | -130 | -134 | |
| >1 to $2 \mathrm{GHz}^{4}$ | | -124 | -128 | |
| >2 to 3.2 GHz | | -120 | -124 | |
| >3.2 to 10 GHz | | -110 | -113 | |
| >10 to 20 GHz | | -104 | -108 | |
| >20 to 40 GHz | | -98 | -102 | |
| >40 to 67 GHz | | -92 | -96 | |
| Option UNR: Enhanced SSB phase noise (CW) ${ }^{3}$ | | | | |
| | | Offset from carrier ($\mathrm{dBc} / \mathrm{Hz}$) | | |
| Frequency | $\begin{gathered} 100 \mathrm{~Hz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 1 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{kHz} \\ \text { spec (typ) } \end{gathered}$ |
| 250 kHz to $250 \mathrm{MHz}^{4}$ | -94 (-115) | -110 (-123) | -128 (-132) | -130 (-133) |
| >250 to $500 \mathrm{MHz}^{4}$ | -100 (-110) | -124 (-130) | -132 (-136) | -136 (-141) |
| $>500 \mathrm{MHz}$ to $1 \mathrm{GHz}^{4}$ | -94 (-104) | -118 (-126) | -130 (-135) | -130 (-135) |
| >1 to $2 \mathrm{GHz}^{4}$ | -88 (-98) | -112 (-120) | -124 (-129) | -124 (-129) |
| >2 to 3.2 GHz | -84 (-94) | -108 (-116) | -120 (-125) | -120 (-125) |
| >3.2 to 10 GHz | -74 (-84) | -98 (-106) | -110 (-115) | -110 (-115) |
| >10 to 20 GHz | -68 (-78) | -92 (-100) | -104 (-107) | -104 (-109) |
| >20 to 40 GHz | -62 (-72) | -86 (-94) | -98 (-101) | -98 (-103) |
| >40 to 67 GHz | -56 (-66) | -80 (-88) | -92 (-95) | -92 (-97) |

[^3]| Option UNX: Absolute SSB phase noise (dBc/Hz) (CW) ${ }^{1}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offset from carrier | | | | | | |
| Frequency | | | $100 \mathrm{~Hz}$ | | 10 kHz | $100 \text { kHz }$ |
| | Spec (typ) |
| 250 kHz to $250 \mathrm{MHz}^{2}$ | -58 (-66) | -87 (-94) | -104 (-120) | -121 (-128) | -128 (-132) | -130 (-133) |
| > 250 to $500 \mathrm{MHz}^{2}$ | -61 (-72) | -88 (-98) | -108 (-118) | -126 (-132) | -132 (-136) | -136 (-141) |
| $>500 \mathrm{MHz}$ to $1 \mathrm{GHz}^{2}$ | -57 (-65) | -84 (-93) | -101 (-111) | -121 (-130) | -130 (-134) | -130 (-135) |
| >1 to $2 \mathrm{GHz}^{2}$ | -51 (-58) | -79 (-86) | -96 (-106) | -115 (-124) | -124 (-129) | -124 (-129) |
| >2 to 3.2 GHz | -46 (-54) | -74 (-82) | -92 (-102) | -111 (-120) | -120 (-124) | -120 (-124) |
| >3.2 to 10 GHz | -37 (-44) | -65 (-72) | -81 (-92) | -101 (-109) | -110 (-114) | -110 (-115) |
| >10 to 20 GHz | -31 (-38) | -59 (-66) | -75 (-87) | -95 (-106) | -104 (-107) | -104 (-109) |
| >20 to 40 GHz | -25 (-32) | -53 (-60) | -69 (-79) | -89 (-99) | -98 (-101) | -98 (-103) |
| > 40 to 67 GHz | -20 (-26) | -47 (-56) | -64 (-73) | -84 (-90) | -92 (-95) | -92 (-97) |
| Option UNX: Residual SSB phase noise (dBc/Hz) (CW) ${ }^{1}$ | | | | | | |
| Offset from carrier | | | | | | |
| Frequency | $\begin{gathered} 1 \mathrm{~Hz} \\ \text { Spec (typ) } \end{gathered}$ | $\begin{gathered} 10 \mathrm{~Hz} \\ \text { Spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \\ \text { Spec (typ) } \end{gathered}$ | 1 kHz
 Spec (typ) | $\begin{gathered} 10 \mathrm{kHz} \\ \text { Spec (typ) } \end{gathered}$ | $\begin{gathered} 100 \mathrm{kHz} \\ \text { Spec (typ) } \end{gathered}$ |
| 250 kHz to $250 \mathrm{MHz}^{2}$ | (-94) | -100 (-107) | -110 (-118) | -120 (-126) | -128 (-132) | -130 (-133) |
| >250 to $500 \mathrm{MHz}^{2}$ | (-101) | -105 (-112) | -115 (-122) | -124 (-131) | -132 (-136) | -136 (-141) |
| $>500 \mathrm{MHz}$ to $1 \mathrm{GHz}^{2}$ | (-94) | -100 (-107) | -110 (-118) | -120 (-126) | -130 (-134) | -130 (-134) |
| >1 to $2 \mathrm{GHz}^{2}$ | (-89) | -96 (-101) | -104 (-112) | -114 (-120) | -124 (-129) | -124 (-129) |
| >2 to 3.2 GHz | (-85) | -92 (-97) | -100 (-108) | -110 (-116) | -120 (-124) | -120 (-124) |
| >3.2 to 10 GHz | (-74) | (-87) | (-98) | (-106) | (-114) | (-115) |

1. Phase noise specifications are warranted from 15 to $35^{\circ} \mathrm{C}$.
2. Measured at +10 dBm or maximum specified power, whichever is less.

Measured phase noise with E5500 and plotted without spurs

Standard phase noise

Residual phase noise

Option UNX phase noise

AM noise at $\mathbf{1 0} \mathbf{~ G H z}$

1. Measured standard performance applies to units with serial numbers ending with 48050000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated November 5, 2007.

Residual FM (RMS, 50 Hz to 15 kHz bandwidth)				
CW mode		$<\mathrm{N} \times 6 \mathrm{~Hz}$ (typ)		
Option UNX/UNR		$<\mathrm{N} \times 4 \mathrm{~Hz}$ (typ)		
Ramp sweep mode		< N x 1 kHz (typ)		
Broadband noise		(CW mode at +10 dBm or maximum specified output power, whichever is lower, for offsets $>10 \mathrm{MHz}$)		
> 2.4 to 20 GHz		$<-148 \mathrm{dBc} / \mathrm{Hz}$ (typ)		
>20 to 40 GHz		$<-141 \mathrm{dBc} / \mathrm{Hz}$ (typ)		
$>40 \mathrm{GHz}$		$<-135 \mathrm{dBc} / \mathrm{Hz}$ (typ)		
Measured RMS jitter ${ }^{1}$				
Standard				
Carrier frequency	SONET/SDH data rates	RMS jitter bandwidth	Unit intervals ($\mu \mathrm{UI}$)	Time (fs)
155 MHz	$155 \mathrm{MB} / \mathrm{s}$	100 Hz to 1.5 MHz	25	158
622 MHz	$622 \mathrm{MB} / \mathrm{s}$	1 kHz to 5 MHz	21	34
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	57	23
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	152	15
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	627	16
Option UNX				
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	($\mu \mathrm{UI}$)	(fs)
155 MHz	$155 \mathrm{MB} / \mathrm{s}$	100 Hz to 1.5 MHz	23	151
622 MHz	$622 \mathrm{MB} / \mathrm{s}$	1 kHz to 5 MHz	19	30
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	56	22
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	152	15
39.812 GHz	$39812 \mathrm{MB} / \mathrm{s}$	40 kHz to 320 MHz	626	16

1. Calculated from phase noise performance in CW mode only at +10 dBm . For other frequencies, data rate, or bandwidths, please contact your sales representative.

Frequency modulation ${ }^{1}$ (Option UNT)

Maximum deviation ${ }^{2}$	Frequency 250 kHz to 250 MHz >250 to 500 MHz $>500 \mathrm{MHz}$ to 1 GHz $>1 \mathrm{GHz}$ to 2 GHz $>2 \mathrm{GHz}$ to 3.2 GHz $>3.2 \mathrm{GHz}$ to 10 GHz $>10 \mathrm{GHz}$ to 20 GHz $>20 \mathrm{GHz}$ to 40 GHz $>40 \mathrm{GHz}$ to 67 GHz	Maximum deviation 2 MHz 1 MHz 2 MHz 4 MHz 8 MHz 16 MHz 32 MHz 64 MHz 128 MHz
Resolution	0.1% of deviation or 1 Hz , whichever is greater	
Deviation accuracy	$< \pm 3.5 \%$ of FM deviation +20 Hz (1 kHz rate, deviations $<\mathrm{N} \times 800 \mathrm{kHz}$)	
Modulation frequency response ${ }^{3}$ (at 100 kHz deviation)		
Path [coupling]	1 dB bandwidth	3 dB bandwidth (ty
FM path 1 [DC]	DC to 100 kHz	DC to 10 MHz
FM path 2 [DC]	DC to 100 kHz	DC to 1 MHz
FM path 1 [AC]	20 Hz to 100 kHz	5 Hz to 10 MHz
FM path 2 [AC]	20 Hz to 100 kHz	5 Hz to 1 MHz
DC FM ${ }^{4}$ carrier offset	$\pm 0.1 \%$ of set deviation $+(\mathrm{N} \times 8 \mathrm{~Hz}$)	
Distortion	$<1 \%$ (1 kHz rate, deviations < $\mathrm{N} \times 800 \mathrm{kHz}$)	
Sensitivity	$\pm 1 \mathrm{~V}_{\text {peak }}$ for indicated deviation	
Paths	FM1 and FM2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2 The FM2 path is limited to a maximum rate of 1 MHz . The FM2 path must be set to a deviation less than FM	

Phase modulation ${ }^{5}$
(Option UNT)

1. Above $50 \mathrm{GHz}, \mathrm{FM}$ is useable; however performance is not warranted.
2. Through any combination of path1, path2, or path1 + path2.
3. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 10 MHz (FM1 path), and 50 kHz to 1 MHz (FM2 path).
4. At the calibrated deviation and carrier frequency, within $5^{\circ} \mathrm{C}$ of ambient temperature at time of user calibration.
5. Above 50 GHz , phase modulation is useable; however performance is not warranted
6. Through any combination of path1, path2, or path1 + path2.
7. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 1 MHz (high BW mode).
8. Path 1 is useable to 4 MHz for external inputs less than 0.3 V peak.
Amplitude modulation ${ }^{1}$
(part of Option UNT)
(typical)

Depth Linear mode	Exponential (log) mode (downward modulation only)
Maximum:	
ALC On:	
ALC Off with Power Search ${ }^{2}$	
or ALC On with Deep AM ${ }^{3}$:	$>95 \%$ \% ${ }^{\text {\% }}$ dB
Settable:	0 to 100% 0 to 40 dB (0 to $100 \% /$ volt sensitivity) (0 to $40 \mathrm{~dB} /$ volt sensitivity)
Resolution:	$0.1 \% \quad 0.01 \mathrm{~dB}$
Accuracy (ALC On, 1kHz rate):	< $\pm(6 \%$ of setting $+1 \%)$
$< \pm(2 \%$ of setting $+0.2 \mathrm{~dB})$	
Ext sensitivity	$\pm 1 \mathrm{~V}_{\text {peak }}$ for indicated depth -1 V for indicated depth
Rates (3 dB bandwidth, 30% depth)	
DC Coupled	0 to 100 kHz
AC coupled	10 Hz to 100 kHz (useable to 1 MHz)
Distortion (1 kHz rate, ALC On, linear mode, Total Harmonic Distortion)	
30\% AM	< 1.5\%
60\% AM	<2\%
Paths	AM1 and AM2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Ext1, Ext2, Internal1, Internal2.

1. AM specifications are typical. For carrier frequencies below 2 MHz or above $50 \mathrm{GHz}, \mathrm{AM}$ is useable but not specified. Unless otherwise stated, specifications apply with ALC on and envelope peaks within ALC operating range (-20 dBm to maximum specified power, excluding step-attenuator setting).
2. ALC Off is used for narrow pulse modulation and/or high AM depths, with envelope peaks below ALC operating range. Carrier power level will be accurate after a Power Search is executed.
3. ALC On with Deep AM provides high AM depths together with closed-loop internal leveling. This mode can be used with a repetitive $A M$ waveform (frequency $>10 \mathrm{~Hz}$) with peaks $>-5 \mathrm{dBm}$ (nominal, excluding step-attenuator setting).

External modulation inputs
 (Ext1 \& Ext2)
 (Option UNT)

Internal modulation source (Option UNT)

Modulation types	AM, FM, and ΦM
Input impedance	50 or $600 \quad$ (nom) switched
High/low indicator	Activated when input level error exceeds 3% (nom)
(100 Hz to 10 MHz BW, ac coupled inputs only)	

Dual function generators provides two independent signals (internal1 and internal2) for use with AM, FM, ФM, or LF Out.

Waveforms	Sine, square, positive ramp, negative ramp, triangle, Gaussian noise, uniform noise, swept sine, dual sine ${ }^{1}$
Rate range	
Sine	0.5 Hz to 1 MHz
Square, ramp, triangle	0.5 Hz to 100 kHz
Resolution	0.5 Hz
Accuracy	Same as timebase
LF Out	
Output	Internal1 or internal2. Also provides monitoring of internal1or internal2 when used for AM, FM, or ФМ.
Amplitude	0 to $3 \mathrm{~V}_{\text {peak, }}$ (nom) into 50Ω
Output impedance	50Ω (nom)
Swept sine mode: (frequency, phase continuous)	
Operating modes	Triggered or continuous sweeps
Frequency range	1 Hz to 1 MHz
Sweep rate	0.5 Hz to 100 kHz sweeps/s, equivalent to sweep times 10 us to 2 s
Resolution	0.5 Hz (0.5 sweep/s)

1. Internal2 is not available when using swept sine or dual sine modes.

Pulse modulation¹, 2 (Option UNU)

Narrow pulse modulation ${ }^{1,2}$ (Option UNW)

	500 MHz to 3.2 GHz	Above 3.2 GHz
On/0ff ratio	80 dB (typ)	80 dB
Rise/Fall times (Tr, Tf)	100 ns (typ)	6 ns (typ)
Minimum pulse width		
Internally leveled	2 us	1 us
Level hold (ALC off with power search)	0.5 us	0.15 us
Repetition frequency		
Internally leveled	10 Hz to 250 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search)	dc to 1 MHz	dc to 3 MHz
Level accuracy (relative to CW)		
Internally leveled	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
Level hold (ALC off with power search)	$\pm 0.5 \mathrm{~dB}$ (typ)	$\pm 0.5 \mathrm{~dB}$ (typ)
Width compression (RF width relative to video out)	$\pm 50 \mathrm{~ns}$ (typ)	$\pm 5 \mathrm{~ns}$ (typ)
Video feed-through ${ }^{3}$	<200 mv (typ)	< 2 mv (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	270 ns (nom)	35 ns (nom)
Pulse overshoot	< 10\% (typ)	< 10\% (typ)
Input level	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ On	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ On
Input impedance	50Ω (nom)	50Ω (nom)

	10 MHz to 3.2 GHz	Above 3.2 GHz
On/0ff ratio	80 dB	80 dB
Rise/Fall times (Tr, Tf)	10 ns (8 ns typical)	$10 \mathrm{~ns} \mathrm{(6} \mathrm{~ns} \mathrm{typical)}$
Minimum pulse width		
Internally leveled	1 us	1 us
Level hold (ALC off with power search)	20 ns	20 ns
Repetition frequency		
Internally leveled	10 Hz to 500 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search)	dc to 5 MHz	dc to 10 MHz
Level accuracy (relative to CW)		
Internally leveled	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$ (0.15 dB typical)
Level hold (ALC off with power search)	$\pm 1.3 \mathrm{~dB}$ (typ)	$\pm 0.5 \mathrm{~dB}$ (typ)

1. With ALC off, specs apply after the execution of power search. Specifications apply with Atten Hold Off (default mode for instruments with attenuator), or ALC level between -5 and +10 dBm or maximum specific power, whichever is lower. Above 50 GHz , pulse modulation is useable; however performance is not warranted.
2. Power search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing power search, RF power will be present for typically 10 to 50 ms ; the step attenuator (Option 1E1) can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range.
3. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

	$\mathbf{1 0 ~ M H z ~ t o ~ 3 . 2 ~ G H z ~}$	Above 3.2 GHz
Width compression (RF width relative to video out)	$\pm 5 \mathrm{~ns}$ (typ)	$\pm 5 \mathrm{~ns}$ (typ)
Video feed-through ${ }^{1}$	$<125 \mathrm{mv}$ (typ)	$<2 \mathrm{mv}$ (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	45 ns (nom)	35 ns (nom)
Pulse overshoot	$<15 \%$ (typ)	$<10 \%$ (typ)
Input level	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ On	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ On
Input impedance	50Ω (nom)	50Ω (nom)

Internal pulse generator (Option UNU or UNW)

Simultaneous modulation

Modes	Free-run, triggered, triggered with delay, doublet, and gated. Triggered with delay, doublet, and gated require external trigger source.
Period (PRI) (Tp)	70 ns to 42 s (Repetition frequency: 0.024 Hz to Pulse width (Tw) Delay (Td) Free-run mode Triggered with delay and doublet modes
Resolution	0 to $\pm 42 \mathrm{~s}$

Td Video delay (variable)
Tw Video pulse width (variable)
Tp Pulse period (variable)
Tm RF delay
Trf RF pulse width
Tf RF pulse fall time
Tr RF pulse rise time
Vor Pulse overshoot
Vf Video feedthrough

All modulation types (FM, AM, ФM, and pulse modulations) may be simultaneously enabled except: FM with ΦM, and linear AM with exponential AM. AM, FM, and ΦM can sum simultaneous inputs from any two sources (Ext1, Ext2, internal1, or internal2). Any given source (Ext1, Ext2, internal1, or internal2) may be routed to only one activated modulation type.

1. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface.
Control languages	SCPI version 1997.0. Completely code compatible with previous PSG signal generator models: - E8241A - E8244A - E8251A - E8254A - E8247C - E8257C
	The E8257D will emulate the applicable commands for the following Agilent signal generators, providing general compatibility with ATE systems: - 8340 -series ($8340 / 41 \mathrm{~B}$) - 8360-series ($836 x x B / L$) - 83700 -series ($837 x x B$) - 8662A/63A
IEEE-488 functions	SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DTO, C0, E2.
ISO compliant	This family of signal generators is manufactured in an ISO-9001 registered facility in concurrence with Agilent commitment to quality.
Agilent IO Libraries	Agilent's IO Library Suite ships with the E8257D to help you quickly establish an error-free connection between your PC and instruments regardless of the vendor. It provides robust instrument control and works with the software development environment you choose.

www.valuetronics.com

General specifications

Power requirements	90 to 132 VAC 47 to 64 Hz or 365 to 435 Hz ; or 195 to 267 VAC 47 to 64 Hz , (automatically selected); < 250 W typical, 300 W maximum.
Operating temperature range	0 to $55^{\circ} \mathrm{C}$
Storage temperature range ${ }^{1}$	-40 to $70{ }^{\circ} \mathrm{C}$
Altitude	< 4,572 m (15,000 ft.)
Environmental testing	Samples of this product have been tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude, and power line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class $3 .{ }^{2}$
EMC	Meets the conducted and radiated interference and immunity requirements of IEC/EN 61326-1. Meets radiated emission requirements of CISPR Pub 11/1997 Group 1 class A.
Storage registers	Memory is shared by instrument states and sweep list files. There is 14 MB of flash memory available in the E8257D PSG. Depending on how the memory is used, a maximum of 1000 instrument states can be saved.
Security	Display blanking Memory clearing functions (see Application Note Security of Agilent Signal Generators Issues and Solutions, literature number 5989-1091EN)
Compatibility	Agilent 83550 Series Millimeter Heads and OML millimeter source modules. Agilent 8757D scalar network analyzers. Agilent EPM Series power meters.
Self-test	Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test.
Weight	$<22 \mathrm{~kg}$ (48 lb.) net, < 30 kg (68 lb.) shipping
Dimensions	$\begin{aligned} & 178 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~mm} \mathrm{~W} \times 515 \mathrm{~mm} \mathrm{D} \\ & \left(7^{\prime \prime} \mathrm{H} \times 16.8^{\prime \prime} \mathrm{W} \times 20.3^{\prime \prime} \mathrm{D}\right. \text { in.) } \end{aligned}$
Recommended calibration cycle	24 months

[^4]
Input/Output Descriptions

Front panel connectors (All connectors are BNC female unless otherwise noted.) ${ }^{1}$

RF output	Output impedance 50Ω (nom)
Option 520	Precision APC-3.5 male, or Type-N with Option 1ED
Options 532, 540 and 550	Precision 2.4 mm male; plus $2.4-2.4 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adapters
Option 567	Precision 1.85 mm male; plus $1.85-1.85 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adapters
$\overline{\text { ALC input }}$	Used for negative external detector leveling. Nominal input impedance $120 \mathrm{k} \Omega$, damage level $\pm 15 \mathrm{~V}$.
LF output	Outputs the internally generated LF source. Nominal output impedance 50Ω.
External input 1	Drives either AM, FM, or ΦM. Nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
External input 2	Drives either AM, FM, or ΦM. Nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
Pulse/trigger gate input	Accepts input signal for external fast pulse modulation. Also accepts external trigger pulse input for internal pulse modulation. Nominal impedance 50Ω. Damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$.
Pulse video out	Outputs a signal that follows the RF output in all pulse modes. TTL-level compatible, nominal source impedance 50Ω.
Pulse sync out	Outputs a synchronizing pulse, nominally 50 ns width, during internal and triggered pulse modulation. TTL-level compatible, nominal source impedance 50Ω.

Rear panel connectors (all connectors are BNC female unless otherwise noted.) ${ }^{1}$

Auxiliary interface (dual mode)	Used for RS-232 serial communication and for master/slave source synchronization. (9-pin subminiature female connector).
GPIB	Allows communication with compatible devices
LAN	Allows 10BaseT LAN communication
10 MHz input	Accepts an external reference (timebase) input (at 1, $2,2.5,5,10 \mathrm{MHz}$ for standard and 10 MHz only for Option UNX and UNR) Nominal input impedance 50Ω Damage levels $>+10 \mathrm{dBm}$
10 MHz output	Outputs internal or external reference signal. Nominal output impedance 50Ω. Nominal output power +8 dBm .
Sweep output (dual mode)	Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width.
	During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency.
	When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nom) across a ramp (analog) sweep. Number of pulses can be set form 101 to 1601 by remote control from the 8757 D.
	Output impedance: < 1Ω (nom), can drive 2000Ω.

[^5]| Stop sweep In/Out ramp | Open-collector, TTL-compatible input/output. In sweep operation, provides low level (nominally 0 V) during sweep retrace and bandcross intervals, and high level during the forward portion of the sweep. Sweep will stop when grounded externally, sweep will resume when allowed to go high. |
| :---: | :---: |
| Trigger output (dual mode) vides | Outputs a TTL signal. High at start of dwell, or when waiting for point trigger; low when dwell is over or point trigger is received. In ramp sweep mode, pro1601 equally-spaced 1us pulses (nom) across a ramp sweep. When using LF Out, provides 2 us pulse at start of LF sweep. |
| Trigger input | Accepts 3.3V CMOS signal for triggering point-topoint in manual sweep mode, or to trigger start of LF sweep. Damage levels $\geq+10 \mathrm{~V}$ or $\leq-4 \mathrm{~V}$. |
| Source module interface | Provides power and leveling connections to the millimeter source modules. |
| Source settled | Provides an output trigger that indicates when the signal generator has settled to a new frequency or power level. High indicates source not settled, Low indicates source settled. |
| Z-axis Blank/Markers | During ramp sweep, supplies +5 V (nom) level during retrace and bandswitch intervals. Supplies -5 V (nom) level when the RF frequency is at a marker frequency. |
| 10 MHz EFC | (Option UNR/UNX only) Accepts an external DC voltage, ranging from -5 V to +5 V , for electronic frequency control (EFC) of the internal 10 MHz reference oscillator. This voltage inversely tunes the oscillator about its center frequency approximately $-0.07 \mathrm{ppm} / \mathrm{V}$. The nominal input impedance is greater than $1 \mathrm{M} \Omega$. |
| 1 GHz Out | (Option UNX only) Low noise 1 GHz reference output signal, approximately +5 dBm (nom). |

Model/option	Description
E8257D-520	Frequency range from 250 kHz to 20 GHz
E8257D-532	Frequency range from 250 kHz to 31.8 GHz
E8257D-540	Frequency range from 250 kHz to 40 GHz
E8257D-550	Frequency range from 250 kHz to 50 GHz
E8257D-567	Frequency range from 250 kHz to 67 GHz
E8257D-007	Analog ramp sweep
E8257D-UNX	Ultra low phase noise
E8257D-UNT	AM, FM, phase modulation, and LF output
E8257D-UNU	Pulse modulation
E8257D-UNW ${ }^{1}$	Narrow pulse modulation
E8257D-1EA	High output power
E8257D-1E1	Step attenuator
E8257D-1ED	Type-N (f) RF output connector (Option 520 only)
E8257D-1EH	Improved harmonics below 2 GHz
E8257D-1EM	Moves all front panel connectors to the rear panel
E8257D-1CN	Front handle kit
E8257D-1CM	Rackmount flange kit
E8257D-1CP	Rackmount flange and front handle kit
E8257D-C09	Move all front panel connectors to the rear panel except for the RF output connector
E8257D-HSM ${ }^{2}$	Scan modulation (20 GHz model only)
E8257D-HAR ${ }^{4}$	Optimize phase noise $<500 \mathrm{MHz}$ carrier
E8257D-H1S	1 GHz external frequency reference input and output
E8257D-HCC	Connections for phase coherency > 250 MHz
E8257D-H30 ${ }^{1}$	Internal mixer for up conversion capability in the 20, 31.8, and 40 GHz models
E8257D-H60 ${ }^{1}$	Internal mixer for up conversion capability in the 50 and 67 GHz models
E8257D-UK6	Commercial calibration certificate and test data
E8257D-CD1	CD-ROM containing the English documentation set
E8257D-ABA	Printed copy of the English documentation set
E8257D-OBW	Printed copy of the assembly-level service guide
8120-8806	Master/slave interface cable
9211-2656	Transit case
9211-7481	Transit case with wheels
E8257DS15 ${ }^{3}$	OML Inc. Millimeter source module, 50 GHz to 75 GHz at +8 dBm
E8257DS12 ${ }^{3}$	OML Inc. Millimeter source module, 60 GHz to 90 GHz at +6 dBm
E8257DS10 ${ }^{3}$	OML Inc. Millimeter source module, 75 GHz to 110 GHz at +5 dBm
E8257DS08 ${ }^{3}$	OML Inc. Millimeter source module, 90 GHz to 140 GHz at -2 dBm
E8257DS06 ${ }^{3}$	OML Inc. Millimeter source module, 110 GHz to 170 GHz at -6 dBm
E8257DS05 ${ }^{3}$	OML Inc. Millimeter source module, 140 GHz to 220 GHz at -12 dBm
E8257DS03 ${ }^{3}$	OML Inc. Millimeter source module, 220 GHz to 325 GHz at -25 dBm

[^6]
Web Resources

For additional information, visit:
www.agilent.com/find/psg
For more information about renting, leasing or financing Agilent's latest technology, visit:
www.agilent.com/find/buy/alternatives
For more accessory information, visit:
www.agilent.com/find/accessories
For additional description of Agilent's IO Libraries Suite features and installation
requirements, please go to:
www.agilent.com/find/iosuite/database

Related Agilent

 Literature
Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select

Agilent Direct
www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent

 Open
www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:
www.agilent.com/find/removealldoubt

wWw.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 894-4414$
Latin America	3052697500
United States	$(800) 829-4444$

Asia Pacific	
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	0820874411
Belgium	32 (0) 24049340
Denmark	4570131515
Finland	358 (0) 108552100
France	0825010 700*
	*0.125 $£ /$ minute
Germany	$01805246333^{* *}$
	${ }^{* *} 0.14$ €/minute
Ireland	1890924204
Israel	972-3-9288-504/544
Italy	390292608484
Netherlands	31 (0) 205472111
Spain	34 (91) 6313300
Sweden	0200-88 2255
Switzerland	0800805353
United Kingdom	44 (0) 1189276201
Other European Countries:	
www.agilent.com/find/contactus	
March 27, 2008	

Product specifications and descriptions in this document subject to change without notice.

Agilent Technologies, Inc. 2008
Printed in USA, June 23, 2008
5989-0698EN

[^0]: 1. Operational, but unspecified, down to 100 kHz
 2. In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep speeds. Refer to ramp sweep specifications for more information.
 3. Time from GPIB trigger to frequency within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz
 4. Add 12 ms (typical) when switching from greater than 3.2 GHz to less than 3.2 GHz .
 5. N is a factor used to help define certain specifications within the document.
 6. To optimize phase noise use $5 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
 7. Standard performance applies to units with serial numbers ending with 48050000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated November 5, 2007.
[^1]: 1. Maximum power specifications are warranted from 15 to $35^{\circ} \mathrm{C}$, and is typical from 0 to $15^{\circ} \mathrm{C}$. Maximum power over the 35 to $55^{\circ} \mathrm{C}$ range typically degrades less than 2 dB .
 2. With harmonic filters switched off. With filters on, maximum output power is reduced 3 dB for frequencies below 2 GHz
 3. With harmonic filters switched off. With filters on, maximum output power is reduced 2 dB for frequencies below 2 GHz
 4. Specification applies to units with serial numbers ending with 45470000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated December 16, 2004.
 5. Standard performance applies to units with serial numbers ending with 48050000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated November 5, 2007.
[^2]: 1. Specifications are typical for harmonics beyond specified frequency range (beyond 50 GHz for Option 567).
 2. Specification applies to units with serial numbers ending with 45130000 or greater. For units with lower serial numbers, the specification is -28 dBc .
 3. Typical below 250 MHz if Option 1 EH is installed and the filters are off.
 4. In ramp sweep mode (Option 007), harmonics are -30 dBc below 250 MHz .
[^3]: 1. Sub-harmonics are defined as Carrier Freq / N). Specifications are typical for sub-harmonics beyond specified frequency range (beyond 50 GHz for Option 567).
 2. Specifications are typical for spurs beyond specified frequency range (beyond 50 GHz for Option 567). Specifications apply for CW mode, without modulation. In ramp sweep mode (Option 007), performance is typical for offsets > 1 MHz .
 3. Phase noise specifications are warranted from 15 to $35^{\circ} \mathrm{C}$.
 4. Measurement at +10 dBm or maximum specified output power, whichever is less.
[^4]: 1. Storage below $-20^{\circ} \mathrm{C}$ instrument states may be lost.
 2. As is the case with all signal generation equipment, phase noise specifications are not warranted in a vibrating environment.
[^5]: 1. Digital inputs and output are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.
[^6]: 1. Must be ordered with Option 1E1.
 2. Must be ordered with Option UNT and not available with Option UNU.
 3. Millimeter source module a product of Oleson Microwave Labs, Inc. and must be ordered with Option 1EA.
 4. Must be ordered with Options UNX and 1EH.
