

Agilent E8257D PSG Analog Signal Generator

Data Sheet

The Agilent E8257D is a fully synthesized signal generator with high output power, low phase noise, and optional ramp sweep capability.

Specifications apply over a 0 to 55 °C range, unless otherwise stated, and apply after a 45 minute warm-up time. Supplemental characteristics, denoted as typical, nominal, or measured, provide additional (non-warranted) information at 25 °C, which may be useful in the application of the product.

Definitions

Specifications (spec): Represents warranted performance for instruments with a current calibration.

Typical (typ): Represents characteristic performance which is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance which is non-warranted. Represents the value of a parameter that is most likely to occur; the mean and/or mode of all measurements of a parameter.

Measured: Represents characteristic performance which is non-warranted. Represents the value of a parameter measured on an instrument during design verification.

Table of Contents

Specifications
Frequency
Step (digital) sweep4
Ramp (analog) sweep
Output
Spectral purity
Frequency modulation13
Phase modulation
Amplitude modulation14
External modulation inputs15
Internal modulation source15
Pulse modulation16
Narrow pulse modulation
Internal pulse generator17
Simultaneous modulation17
Remote programming18
General specifications19
nput/Output Descriptions
Front panel connectors
Rear panel connectors
Dptions, Accessories, and Related Products
Neb Resources
Related Agilent Literature 23

Specifications

Frequency

Range ¹						
Option 520	250 kHz to 20 GHz					
Option 532	250 kHz to 31.8 GHz					
Option 540	250 kHz to 40 GHz					
Option 550	250 kHz to 50 GHz	250 kHz to 50 GHz				
Option 567	250 kHz to 67 GHz (oper	rational up to 70 GHz)				
Resolution						
CW	0.001 Hz					
All sweep modes	0.01 Hz ²					
CW switching speed ^{3, 4}	< 11 ms (typ)					
	7 ms (nom)					
Phase offset	Adjustable in nominal 0.	1 ° increments				
Frequency bands						
Band	Frequency range	N ⁵				
1	250 kHz to 250 MHz	1/8				
2	> 250 to 500 MHz	1/16				
3	> 500 MHz to 1 GHz	1/8				
4	> 1 to 2 GHz	1/4				
5	> 2 to 3.2 GHz	1/2				
6	> 3.2 to 10 GHz	1				
7	> 10 to 20 GHz	2				
8	> 20 to 40 GHz	4				
9	> 40 GHz	8				
Accuracy	± aging rate ± temperatu	ure effects				
		± line voltage effects (nom) ± calibration accuracy				
Internal timebase reference oscilla						
	Standard ⁷	Option UNR/UNX				
Aging rate	$<\pm3$ x 10 ⁻⁸ /year or	$<\pm3$ x10 ⁻⁸ /year or				
	< ±2.5 x 10 ⁻¹⁰ /day	$< \pm 2.5 \text{ x } 10^{-10} / \text{day}$				
	after 30 days	after 30 days				
Temperature effects (typ)	< ±4.5 x 10 ⁻⁹ 0 to 55 °C	< ±4.5 x 10 ⁻⁹ 0 to 55 °C				
Line voltage effects (typ)	< ±2 x 10 ⁻¹⁰ for	< ±2 x 10 ⁻¹⁰ for				
	±10% change	±10% change				
External reference frequency						
	10 MHz only	10 MHz only				
Lock range	±1.0 ppm	±1.0 ppm				
Reference output						
Frequency	10 MHz					
Amplitude	$>$ +4 dBm into 50 Ω load	l (typ)				
External reference input						
External reference input Amplitude	5 dBm ±5 dB					
	5 dBm ±5 dB 5 dBm ±5 dB ⁶					

^{1.} Operational, but unspecified, down to 100 kHz.

^{2.} In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep speeds. Refer to ramp sweep specifications for more information.

^{3.} Time from GPIB trigger to frequency within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz.

^{4.} Add 12 ms (typical) when switching from greater than 3.2 GHz to less than 3.2 GHz.

^{5.} N is a factor used to help define certain specifications within the document.

^{6.} To optimize phase noise use 5 dBm \pm 2 dB.

^{7.} Standard performance applies to units with serial numbers ending with 48050000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated November 5, 2007.

Step (digital) sweep

Ramp (analog) sweep

(Option 007)²

Operating modes	• Stop owner of	froquonov or omplitude as	hoth (start to star			
operating modes		frequency or amplitude or requency or amplitude or				
Sweep range		requency of amplitude of	both (arbitrary list)			
Frequency sweep	Within instrume	ent frequency range				
Amplitude sweep		or hold range (see "Outp	ut" section)			
Dwell time	1 ms to 60 s	or noid range (see Outp	ut section,			
Number of points	2 to 65535 (step					
Number of points	2 to 1601 per ta					
Triggering	Auto, external, s					
Settling time						
Frequency	< 8 ms (typ) ¹					
Amplitude	< 5 ms (typ)					
Operating modes	 Synthesized fr 	equency sweep				
		center/span), (swept CW	7)			
		ude) sweep (start/stop)				
	 Manual sweet 					
		etween start and stop fr	equencies			
	 Alternate swe 					
		ccessive sweeps betwee	n current and			
	stored states					
Sweep span range	Settable from m	inimum ³ to full range				
Maximum sweep rate	Start frequency	Maximum sweep rate	Max span for			
·			100 ms sweep			
	250 kHz to < 0.5 GHz	25 MHz/ms	2.5 GHz			
	0.5 to < 1 GHz	50 MHz/ms	5 GHz			
	1 to < 2 GHz	100 MHz/ms	10 GHz			
	2 to < 3.2 GHz	200 MHz/ms	20 GHz			
	≥ 3.2 GHz	400 MHz/ms	40 GHz			
Frequency accuracy	± 0.05% of span	± timebase (at 100 ms s	weep time, for			
	sweep spans les	ss than maximum values	given above)			
	Accuracy improv	es proportionally as swe	ep time increases ⁴			
Sweep time	(forward sweep	, not including bandswite	h and retrace			
intervals)						
Manual mode settable	10 ms to 200 se	conds				
Resolution	1 ms					
		value determined by ma	ximum sweep			
	Set to minimum rate and 8757D	setting	ximum sweep			
Auto mode	Set to minimum rate and 8757D Auto, external, s	setting single, or GPIB				
Auto mode Triggering	Set to minimum rate and 8757D Auto, external, s	setting				
Auto mode Triggering Markers	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity	setting single, or GPIB continuously variable fre or RF amplitude pulse	quency markers			
Auto mode Triggering Markers Display Functions	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity M1 to center, M	setting single, or GPIB continuously variable fre	quency markers			
Auto mode Triggering Markers Display Functions Two-tone (master/slave	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity M1 to center, M	setting single, or GPIB continuously variable fre or RF amplitude pulse	quency markers ker delta			
Auto mode Triggering Markers Display Functions Two-tone (master/slave	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity M1 to center, M) Two PSG's can	setting single, or GPIB continuously variable fre or RF amplitude pulse 1/M2 to start/stop, mar	quency markers ker delta n other, with			
Auto mode Triggering Markers Display Functions Two-tone (master/slave measurements ⁵	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity M1 to center, M) Two PSG's can independent con	setting single, or GPIB continuously variable fre or RF amplitude pulse 1/M2 to start/stop, mar synchronously track eacl	quency markers ker delta n other, with ncies			
Auto mode Triggering Markers Display Functions Two-tone (master/slave measurements ⁵ Network analyzer	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity M1 to center, M) Two PSG's can independent con	setting single, or GPIB continuously variable fre or RF amplitude pulse 1/M2 to start/stop, mar synchronously track each ntrol of start/stop freque with Agilent 8757D sca	quency markers ker delta n other, with ncies			
Resolution Auto mode Triggering Markers Display Functions Two-tone (master/slave measurements ⁵ Network analyzer compatibility	Set to minimum rate and 8757D Auto, external, s 10 independent Z-axis intensity M1 to center, M) Two PSG's can independent con Fully compatible network analyze	setting single, or GPIB continuously variable fre or RF amplitude pulse 1/M2 to start/stop, mar synchronously track each ntrol of start/stop freque with Agilent 8757D sca	quency markers ker delta n other, with ncies lar			

1. 19 ms (typ) when stepping from greater than 3.2 GHz to less than 3.2 GHz.

2. During ramp sweep operation, AM, FM, phase modulation, and pulse modulation are useable but performance is not guaranteed.

- 5. For master/slave operation use Agilent part #8120-8806 master/slave interface cable.
- 6. When measuring low-pass devices in AC mode, dynamic range may be reduced up to 10 dB below 3.2 GHz. An external highpass filter may be required to remove 27 kHz pulse source feed-through (For instruments operating from 10 MHz to 20 GHz with 3.5 mm connectors, use Bias Tee part number 5086-7322. For instruments operating from 10 MHz to 50 GHz with 2.4 mm connectors, use Bias Tee part number 5086-7484.)
- 7. GPIB system interface is not supported with 8757A/C/E, only with 8757D. As a result, some features of 8757A/C/E, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.

4

^{3.} Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than [0.00004% of carrier frequency or 140 Hz] x [sweep time in seconds]. Actual span will always be displayed correctly.

Typical accuracy for sweep times > 100 ms can be calculated from the equation: [(0.005% of span)/(sweep time in seconds)] ± timebase. Accuracy is not specified for sweep times < 100 ms.

Output

spec. (typ)	Power ¹ (dBm) Frequency range	Standard	Option 1EA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Trequency range	Stanuaru	
250 kHz to 3.2 GHz with Option UNW-20 to +11-20 to +112-20 to +114(+14)250 kHz to 3.2 GHz with Option 1EH-20 to +102-20 to +116-20 to +115-20 to +123-20 to +125-20 to +22 (+23)> 3.2 Ghz to 5.2 GHz-20 to +155-20 to +23 (+24)+20 to +155-20 to +23 (+24)+20 to +15-20 to +15-20 to +12 (+23)> 5.2 Ghz to 12 GHz-20 to +115-20 to +15-20 to +16 (+13)-20 to +16 (+13)-20 to +16 (+13)250 kHz to 3.2 GHz with Option UNW-20 to +9-20 to +16 (+13)-20 to +16 (+13)-20 to +16 (+13)250 kHz to 3.2 GHz with Option UNW-20 to +9-20 to +16 (+13)-20 to +16 (+13)250 kHz to 3.2 GHz with Option UNW-20 to +9-20 to +16 (+14)> 37 to 40 GHz-20 to +15-20 to +16 (+19)> 37 to 40 GHz-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-20 to +5-20 to +14 (+17)> 30 to 56 GHz-20 to +5-20 to +14 (+17)> 20 to 30 GHz-20 to +5-20 to +14 (+17)> 30 to 56 GHz-135 to +135-135 to +136250 kHz to 3.2 GHz with Option UNW-135 to +136250 kHz to 3.2 GHz with Option UNW-135 to +136250 kHz to 3.2 GHz with Optio	Option 520:	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250 kHz to 3.2 GHz with Options UNW and 1EH		–20 to +10 (+13) ²
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	> 3.2 Ghz to 5.2 GHz		–20 to +22 (+23) ⁴
Options 532 and 540: 250 kHz to 3.2 GHz -20 to $+11^{5}$ -20 to $+15$ ($+18$) 250 kHz to 3.2 GHz with Option UNW -20 to $+9$ -20 to $+12$ ($+15$) 250 kHz to 3.2 GHz with Options UNW and 1EH -20 to $+9^{2}$ -20 to $+12$ ($+15$) 250 kHz to 3.2 GHz with Options UNW and 1EH -20 to $+1^{5}$ -20 to $+19$ ($+12$) ² > 3.2 to 17 GHz -20 to $+15$ -20 to $+16$ ($+19^{4}$) > 37 to 40 GHz -20 to $+15$ -20 to $+16$ ($+19^{4}$) > 37 to 40 GHz -20 to $+5$ -20 to $+14$ ($+17$) 250 kHz to 3.2 GHz with Option UNW -20 to $+5$ -20 to $+11$ ($+14^{17}$) 250 kHz to 3.2 GHz with Options UNW and 1EH -20 to $+5$ -20 to $+11$ ($+12^{1}$) 250 kHz to 3.2 GHz with Options UNW and 1EH -20 to $+5$ -20 to $+11$ ($+17$) > 30 to 65 GHz -20 to $+5$ -20 to $+11$ ($+17$) > 30 to 65 GHz -20 to $+5$ -20 to $+11$ ($+17$) > 30 to 65 GHz -20 to $+5$ -20 to $+11$ ($+17$) > 30 to 65 GHz -20 to $+5$ ($+70$) -20 to $+11$ ($+17$) > 50 kHz to 3.2 GHz with Option UNW -135 to $+13^{5}$ -135 to	> 5.2 Ghz to 12 GHz		–20 to +23 (+24) ⁴
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	> 12 Ghz to 20 GHz	–20 to +15 ⁵	-20 to +21 (+23) ⁴
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Options 532 and 540:		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	–20 to +11 ⁵	-20 to +15 (+18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-20 to +9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-20 to $+19$ $(+21)^4$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Options 550 and 567:250 kHz to 3.2 GHz-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-20 to +5-20 to +14 (+17)250 kHz to 3.2 GHz with Option 1EH-20 to +5-20 to +11 (+14) ² 250 kHz to 3.2 GHz with Options UNW and 1EH-20 to +5-20 to +4 (+17)> 3.2 to 10 GHz-20 to +5-20 to +14 (+17)> 30 to 65 GHz-20 to +5-20 to +14 (+17)> 30 to 65 GHz-20 to +5-20 to +11 (+17)> 30 to 65 GHz-20 to +5-20 to +11 (+17)> 30 to 65 GHz-20 to +5-20 to +11 (+14)> 67 to 70 GHz-20 to +5-20 to +11 (+14)> 67 to 70 GHz-20 to +5-20 to +11 (+14)> 67 to 70 GHz-20 to +5-20 to +11 (+14)250 kHz to 3.2 GHz-135 to +13 ⁵ -135 to +15 (+18)250 kHz to 3.2 GHz with Option UNW-135 to +13 ⁵ -135 to +15 (+18)250 kHz to 3.2 GHz with Option UNW-135 to +13 ⁵ -135 to +12 (+15) ² 250 kHz to 3.2 GHz with Option UNW and 1EH-135 to +13 ⁵ -135 to +12 (+22) ⁴ > 10 GHz to 20 GHz-135 to +13 ⁵ -135 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-135 to +7-135 to +14 (+17)250 kHz to 3.2 GHz with Option UNW-135 to +7-135 to +14 (+17)250 kHz to 3.2 GHz-135 to +9 ⁵ -135 to +14 (+17)250 kHz to 3.2 GHz-135 to +14-110250 kHz to 3.2 GHz-110 to +13 (+16)250 kHz to 3.2 GHz-135 to +14250 kHz to 3.2 GHz-110 to +13 (+16) </td <td></td> <td></td> <td></td>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2010 11	2010 11 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	_20 to +5	$-20 \text{ to } \pm 1/(+17)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Option 520 with step attenuator (Option 1E1): $250 \text{ kHz to } 3.2 \text{ GHz}$ $-135 \text{ to } +13^5$ $-135 \text{ to } +15 \text{ (+18)}$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-135 \text{ to } +10$ $-135 \text{ to } +10 \text{ (+13)}$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-135 \text{ to } +13^3$ $-135 \text{ to } +12 \text{ (+15)}^2$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-135 \text{ to } +9^2$ $-135 \text{ to } +9 \text{ (+12)}^2$ > $3.2 \text{ GHz to } 10 \text{ GHz}$ $-135 \text{ to } +13^5$ $-135 \text{ to } +21 \text{ (+22)}^4$ > 10 GHz to 20 GHz $-135 \text{ to } +13^5$ $-135 \text{ to } +19 \text{ (+20)}^4$ Options 532 and 540 with step attenuator (Option 1E1): $250 \text{ kHz to } 3.2 \text{ GHz}$ $-135 \text{ to } +9^5$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-135 \text{ to } +7$ $-135 \text{ to } +14 \text{ (+17)}$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-135 \text{ to } +7$ $-135 \text{ to } +9 \text{ (+12)}$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-135 \text{ to } +7^3$ $-135 \text{ to } +14 \text{ (+17)}^4$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-135 \text{ to } +9^5$ $-135 \text{ to } +12 \text{ (+16)}^4$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+11)}^2$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+11)}^2$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+12)}^2$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+10)}^2$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option			
250 kHz to 3.2 GHz $-135 \text{ to } +13^5$ $-135 \text{ to } +15 (+18)$ 250 kHz to 3.2 GHz with Option UNW $-135 \text{ to } +10$ $-135 \text{ to } +10 (+13)$ 250 kHz to 3.2 GHz with Options UNW and 1EH $-135 \text{ to } +11^3$ $-135 \text{ to } +12 (+15)^2$ 250 kHz to 3.2 GHz with Options UNW and 1EH $-135 \text{ to } +13^5$ $-135 \text{ to } +12 (+15)^2$ > 3.2 GHz to 10 GHz $-135 \text{ to } +13^5$ $-135 \text{ to } +9 (+12)^2$ > 3.2 GHz to 20 GHz $-135 \text{ to } +13^5$ $-135 \text{ to } +9 (+12)^2$ > 10 GHz to 20 GHz $-135 \text{ to } +13^5$ $-135 \text{ to } +14 (+17)$ 250 kHz to 3.2 GHz with Option UNW $-135 \text{ to } +9^5$ $-135 \text{ to } +14 (+17)$ 250 kHz to 3.2 GHz with Option 1EH $-135 \text{ to } +7^3$ $-135 \text{ to } +9 (+12)^2$ 250 kHz to 3.2 GHz with Options UNW and 1EH $-135 \text{ to } +9^5$ $-135 \text{ to } +14 (+17)^2$ > 3.2 to 17 GHz $-135 \text{ to } +9^5$ $-135 \text{ to } +11 (+14)^2$ > 37 to 40 GHz $-135 \text{ to } +9^5$ $-135 \text{ to } +12 (+16)$ Options 550 and 567 with step attenuator (Option 1E1): $250 \text{ kHz to } 3.2 \text{ GHz with Option UNW}$ $-110 \text{ to } +3$ 250 kHz to 3.2 GHz with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ 250 kHz to 3.2 GHz with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ 250 kHz to 3.2 GHz with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 (+11)^2$ 250 kHz to 3.2 GHz with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 (+12)^2$ > 3.2 to 10 GHz $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ > 20 to $30 GH$		–20 to +5 (typ)	—20 to +8 (typ)
250 kHz to 3.2 GHz with Option UNW -135 to $+10$ -135 to $+10$ -135 to $+10$ $(+13)$ 250 kHz to 3.2 GHz with Options UNW and 1EH -135 to $+11^3$ -135 to $+12$ $(+13)^2$ 250 kHz to 3.2 GHz with Options UNW and 1EH -135 to $+9^2$ -135 to $+9$ -135 to $+9$ $(+12)^2$ > 3.2 GHz to 10 GHz -135 to $+13^5$ -135 to $+9$ $(+12)^2$ -135 to $+9$ $(+12)^2$ > 10 GHz to 20 GHz -135 to $+13^5$ -135 to $+10$ $(+22)^4$ Options 532 and 540 with step attenuator (Option 1E1): -135 to $+10$ $(+22)^4$ 250 kHz to 3.2 GHz with Option UNW -135 to $+7^7$ -135 to $+14$ 250 kHz to 3.2 GHz with Option 1EH -135 to $+7^7$ -135 to $+14$ 250 kHz to 3.2 GHz with Options UNW and 1EH -135 to $+9^5$ -135 to $+17$ > 3.2 to 17 GHz -135 to $+9^5$ -135 to $+17$ $(+20)^4$ > 17 to 37 GHz -135 to $+9^5$ -135 to $+17$ $(+17)^4$ > 37 to 40 GHz -110 to $+3$ -110 to $+13$ $(+16)$ 250 kHz to 3.2 GHz with Option UNW -110 to $+3$ -110 to $+13$ $(+10)^2$ 250 kHz to 3.2 GHz with Option UNW -110 to $+3$ -110 to $+13$ $(+10)^2$ > 3.2 to 10 GHz -110 to $+3$ -110 to $+13$ $(+10)^2$ > 3.2 to 10 GHz -110 to $+3$ -110 to $+13$ $(+10)^2$ > 10 to 20 GHz -110 to $+3$ -110 to $+13$ $(+16)$ > 20 to 30 GHz -110 to $+3$ -110 to $+9$ $(+12)^2$ > 10 to 20 GHz<			
250 kHz to 3.2 GHz with Option 1EH -135 to $+11^3$ -135 to $+12$ $(+15)^2$ 250 kHz to 3.2 GHz with Options UNW and 1EH -135 to $+9^2$ -135 to $+12$ $(+12)^2$ > 3.2 GHz to 10 GHz -135 to $+13^5$ -135 to $+9$ $(+12)^2$ > 10 GHz to 20 GHz -135 to $+13^5$ -135 to $+19$ $(+20)^4$ Options 532 and 540 with step attenuator (Option 1E1):250 kHz to 3.2 GHz -135 to $+9^5$ -135 to $+14$ $(+17)$ 250 kHz to 3.2 GHz with Option UNW -135 to $+7$ -135 to $+14$ $(+17)^2$ 250 kHz to 3.2 GHz with Option 1EH -135 to $+7$ -135 to $+14$ $(+17)^2$ 250 kHz to 3.2 GHz with Option 1EH -135 to $+7^3$ -135 to $+14$ $(+17)^4$ > 3.2 to 17 GHz -135 to $+9^5$ -135 to $+17$ $(+20)^4$ > 17 to 37 GHz -135 to $+9^5$ -135 to $+12$ $(+16)^2$ Options 550 and 567 with step attenuator (Option 1E1):250 kHz to 3.2 GHz with Option UNW -110 to $+3$ -110 to $+13$ $(+16)$ 250 kHz to 3.2 GHz with Option UNW -110 to $+3$ -110 to $+13$ $(+16)$ 250 kHz to 3.2 GHz with Option UNW -110 to $+3$ -110 to $+13$ $(+16)$ 250 kHz to 3.2 GHz with Option UNW -110 to $+3$ -110 to $+13$ $(+20)^2$ > 3.2 to 10 GHz -110 to $+3$ -110 to $+13$ $(+16)$ > 20 to 30 GHz -110 to $+3$ -110 to $+13$ $(+16)$ > 20 to 30 GHz -110 to $+3$ -110 to $+9$ $(+12)$ > 65 to 67 GHz -110 to $+3$ -110 to $+9$ $(+12)$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ > 10 \text{ GHz to } 20 \text{ GHz} $ $ -135 \text{ to } +13^{5} $ $ -135 \text{ to } +19 (+20)^{4} $ $ \textbf{Options } \textbf{532 and } \textbf{540 with step attenuator (Option 1E1):} $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option UNW} $ $ -135 \text{ to } +9^{5} $ $ -135 \text{ to } +14 (+17) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -135 \text{ to } +7 $ $ -135 \text{ to } +9 (+12) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -135 \text{ to } +7 $ $ -135 \text{ to } +9 (+12) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -135 \text{ to } +7^{3} $ $ -135 \text{ to } +11 (+14)^{2} $ $ > 3.2 \text{ to } 17 \text{ GHz} $ $ -135 \text{ to } +9^{5} $ $ -135 \text{ to } +11 (+17)^{4} $ $ > 37 \text{ to } 40 \text{ GHz} $ $ -135 \text{ to } +9^{5} $ $ -135 \text{ to } +11 (+17)^{4} $ $ > 37 \text{ to } 40 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ 250 \text{ kHz to } 3.2 \text{ GHz with Option 1EH} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ > 3.2 \text{ to } 10 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ > 20 \text{ to } 30 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ > 20 \text{ to } 30 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +13 (+16) $ $ > 20 \text{ to } 30 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +9 (+16) $ $ > 30 \text{ to } 65 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +9 (+12) $ $ > 65 \text{ to } 67 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +8 (+12) $ $ > 65 \text{ to } 67 \text{ GHz} $ $ -110 \text{ to } +3 $ $ -110 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } +8 (+12) $ $ = 10 \text{ to } $			
Options 532 and 540 with step attenuator (Option 1E1): $250 \text{ kHz to } 3.2 \text{ GHz}$ $-135 \text{ to } +9^5$ $-135 \text{ to } +14 (+17)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-135 \text{ to } +7$ $-135 \text{ to } +9 (+12)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option 1EH $-135 \text{ to } +7$ $-135 \text{ to } +9 (+12)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-135 \text{ to } +7^3$ $-135 \text{ to } +11 (+14)^2$ $> 3.2 \text{ to } 17 \text{ GHz}$ $-135 \text{ to } +9^5$ $-135 \text{ to } +17 (+20)^4$ $> 17 \text{ to } 37 \text{ GHz}$ $-135 \text{ to } +9^5$ $-135 \text{ to } +14 (+17)^4$ $> 37 \text{ to } 40 \text{ GHz}$ $-135 \text{ to } +9^5$ $-135 \text{ to } +14 (+17)^4$ $> 250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option 1EH $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-110 \text{ to } +3$ $-110 \text{ to } +13 (+20)^2$ $> 3.2 \text{ to } 10 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +13 (+16)$ $> 20 \text{ to } 30 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +3 (+16)$ $> 20 \text{ to } 30 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +9 (+12)$ $> 65 \text{ to } 67 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +8 (+12)$	> 3.2 GHz to 10 GHz		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	> 10 GHz to 20 GHz	–135 to +13 ⁵	–135 to +19 (+20) ⁴
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Options 532 and 540 with step attenuator (Op	tion 1E1):	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	250 kHz to 3.2 GHz	–135 to +9 ⁵	–135 to +14 (+17)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	250 kHz to 3.2 GHz with Option UNW	–135 to +7	-135 to +9 (+12)
$\begin{array}{rllllllllllllllllllllllllllllllllllll$		–135 to +7	-135 to $+11(+14)^2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		
Options 550 and 567 with step attenuator (Option 1E1): $250 \text{ kHz to } 3.2 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +3$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option UNW $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+11)}$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Option 1EH $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+11)}$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-110 \text{ to } +3$ $-110 \text{ to } +10 \text{ (+13)}^2$ $250 \text{ kHz to } 3.2 \text{ GHz}$ with Options UNW and 1EH $-110 \text{ to } +3$ $-110 \text{ to } +7 \text{ (+10)}^2$ $> 3.2 \text{ to } 10 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+11)}$ $> 10 \text{ to } 20 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +3 \text{ (+12)}$ $> 20 \text{ to } 30 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +9 \text{ (+16)}$ $> 30 \text{ to } 65 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +9 \text{ (+12)}$ $> 65 \text{ to } 67 \text{ GHz}$ $-110 \text{ to } +3$ $-110 \text{ to } +8 \text{ (+12)}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_110 to +13 (+16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
> 3.2 to 10 GHz -110 to +3 -110 to +13 (+20) > 10 to 20 GHz -110 to +3 -110 to +13 (+16) > 20 to 30 GHz -110 to +3 -110 to +9 (+16) > 30 to 65 GHz -110 to +3 -110 to +9 (+12) > 65 to 67 GHz -110 to +3 -110 to +8 (+12)			
> 10 to 20 GHz -110 to +3 -110 to +13 (+16) > 20 to 30 GHz -110 to +3 -110 to +9 (+16) > 30 to 65 GHz -110 to +3 -110 to +9 (+12) > 65 to 67 GHz -110 to +3 -110 to +8 (+12)			
> 20 to 30 GHz -110 to +3 -110 to +9 (+16) > 30 to 65 GHz -110 to +3 -110 to +9 (+12) > 65 to 67 GHz -110 to +3 -110 to +8 (+12)			
> 30 to 65 GHz -110 to +3 -110 to +9 (+12) > 65 to 67 GHz -110 to +3 -110 to +8 (+12)			, ,
> 65 to 67 GHz -110 to +3 -110 to +8 (+12)			· · · ·
> 0/ to /U GHZ -110 to +3 (typ) -110 to +6 (typ)			
	> 0/ TO /U GHZ	-110 to +3 (typ)	-110 to +6 (typ)

1. Maximum power specifications are warranted from 15 to 35 °C, and is typical from 0 to 15 °C. Maximum power over the 35 to 55 °C range typically degrades less than 2 dB.

2. With harmonic filters switched off. With filters on, maximum output power is reduced 3 dB for frequencies below 2 GHz.

3. With harmonic filters switched off. With filters on, maximum output power is reduced 2 dB for frequencies below 2 GHz.

 Specification applies to units with serial numbers ending with 45470000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated December 16, 2004.

5. Standard performance applies to units with serial numbers ending with 48050000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated November 5, 2007.

Step attenuator¹ (Option 1E1) Options 520, 532, and 540 Options 550 and 567 **Maximum available power (measured)**

0 dB and 5 dB to 115 dB in 10 dB steps 0 dB to 90 dB in 10 dB steps

Attenuator hold ra	nge						
Minimum	From –20 dB	m to maximum sp	ecified output pow	ver with step			
	attenuator in 0 dB position. Can be offset using Option 1E1 attenua						
Amplitude switchi	ng speed ²						
ALC on or off		< 3 ms (typ)					
(without power sea	arch)						
Level accuracy ³ (d	B)						
Frequency	> +10 dBm	+10 to 0 dBm	0 to –10 dBm	–10 to –20 dBm			
250 kHz to 2 GHz	±0.6	±0.6	±0.6	±1.4			
> 2 GHz to 20 GHz	±0.8	±0.8	±0.8	±1.2			
> 20 to 40 GHz	±1.0	±0.9	±0.9	±1.3			
> 40 to 50 GHz		±1.3	±0.9	±1.2			
> 50 to 67 GHz		±1.5	±1.0	±1.2 (typ)			

1. The step attenuator provides coarse power attenuation to achieve low power levels. Fine power level adjustment is provided by the ALC (Automatic Level Control) within the attenuator hold range.

2. To within 0.1 dB of final amplitude within one attenuator range. Add 10 to 50 ms when using power search.

3. Specifications apply in CW and list/step sweep modes over the 15 to 35 °C temperature range with the ALC on. Degradation outside this range, for power levels > -10 dBm, is typically < 0.3 dB. In ramp sweep mode (with Option 007), specifications are typical. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. Specifications do not apply above the maximum specified power.</p>

6

Level accuracy with step attenuator (Option 1E1) ¹ (dB)								
Frequency	> +10 dBm	+10 to 0 dBm	0 to –10 dBm	–10 to –70 dBm	–70 to –90 dBm			
250 kHz to 2 G	Hz ±0.6	±0.6	±0.6	±0.7	±0.8			
> 2 to 20 GHz	±0.8	±0.8	±0.8	±0.9	±1.0			
> 20 to 40 GHz	z ±1.0	±0.9	±0.9	±1.0	±2.0			
> 40 to 50 GHz	z	±1.3	±0.9	±1.5	±2.5			
> 50 to 67 GH	z	±1.5	±1.0	±1.5 (typ)	±2.5 (typ)			

Level accuracy (measured)

Resolution	0.01 dB
Temperature stability	0.01 dB/°C (typ) ²
User flatness correction	
Number of points	2 to 1601 points/table
Number of tables	Up to 10,000, memory limited
Path loss	Arbitrary, within attenuator range
Entry modes	Remote power meter ³ , remote bus, manual
	(user edit/view)

- 2. Options 550 and 567: $0.03 dB/^{\circ}C$ (typ) above 2 GHz.
- 3. Compatible with Agilent EPM Series (E4418B and E4419B) power meters.

Specifications apply in CW and list/step sweep modes over the 15 to 35 °C temperature range, with attenuator hold off (normal operating mode). Degradation outside this range, for ALC power levels > -10 dBm, is typically < 0.3 dB. In ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. Specifications do not apply above the maximum specified power.

Output impedance	50 Ω (nom)
SWR (internally leveled)	
250 kHz to 2 GHz	< 1.4:1 (typ)
> 2 GHz to 20 GHz	< 1.6:1 (typ)
> 20 GHz to 40 GHz	< 1.8:1 (typ)
> 40 GHz to 67 GHz	< 2.0:1 (typ)
Leveling modes	Internal leveling, external detector leveling,
	millimeter source module, ALC off
External detector leveling	
Range	-0.2 mV to -0.5 V (nom) (-36 dBm to
	+4 dBm using Agilent 33330D/E detector)
Bandwidth	Selectable 0.1 to 100 kHz (nom)
	(Note: not intended for pulsed operation)
Maximum reverse power 1/2 Watt, 0 V _{DC}	

Spectral purity

Harmonics ¹	(dBc at +10 dBm or maximum specified
	output power, whichever is lower)
< 10 MHz	–28 dBc (typical below 1 MHz)
10 MHz to 2 GHz	-30 dBc ^{2,3}
10 MHz to 2 GHz (with Option 1EH filters on)	–55 dBc ⁴
> 2 GHz to 20 GHz	–55 dBc
> 20 GHz to 67 GHz (Option 532, 540, 550 & 567)) –50 dBc (typical)
Harmonics (measured)	

Harmonics (measured)

1. Specifications are typical for harmonics beyond specified frequency range (beyond 50 GHz for Option 567).

2. Specification applies to units with serial numbers ending with 45130000 or greater. For units with lower serial numbers, the specification is -28 dBc.

3. Typical below 250 MHz if Option 1EH is installed and the filters are off.

4. In ramp sweep mode (Option 007), harmonics are -30 dBc below 250 MHz.

www.valuetronics.com

8

Sub-harmonics ¹		(dBc at +10 dB	(dBc at +10 dBm or maximum specified output				
		power, which	power, whichever is lower)				
250 kHz to 10 GHz		None					
> 10 GHz to 20 GHz		<-60 dBc					
> 20 GHz		<-50 dBc					
Non-harmonics ²			3m or maximum s				
		•	ever is lower, for o				
		[> 300 Hz with Option UNX or UNR])					
Frequency		Spec	Typical				
250 kHz to 250 MHz		-65		· 10 kHz offset			
> 250 MHz to 1 GHz		-80	-88				
> 1 to 2 GHz		-74	-82				
> 2 to 3.2 GHz		-68	-76				
> 3.2 to 10 GHz		-62	-70				
> 10 to 20 GHz > 20 to 40 GHz		56 50	-64 -58				
> 40 GHz			-58 -52				
	v 3		-				
SSB phase noise (CW Frequency	/) •	20 kHz	Offset from carrier (dBc/Hz) 20 kHz 20 kHz 20 kHz				
250 kHz to 250 MHz ⁴		-130	–134	lypical)			
> 250 to 500 MHz ⁴		-134	-134				
> 500 MHz to 1 GHz ⁴		-130	-134				
> 1 to 2 GHz ⁴		-124	-128				
> 2 to 3.2 GHz		-120	-124				
> 3.2 to 10 GHz		-110	-113				
> 10 to 20 GHz		-104	-108				
> 20 to 40 GHz		-98	-102				
> 40 to 67 GHz		-92	-96				
Option UNR: Enhance	ed SSB phase n	oise (CW) ³					
		Offset from ca	arrier (dBc/Hz)				
Frequency	100 Hz	1 kHz	10 kHz	100 kHz			
	spec (typ)	spec (typ)	spec (typ)	spec (typ)			
250 kHz to 250 MHz ⁴	-94 (-115)	-110 (-123)	-128 (-132)	-130 (-133			
> 250 to 500 MHz ⁴	-100 (-110)	-124 (-130)	-132 (-136)	–136 (–141			
> 500 MHz to 1 GHz ⁴	-94 (-104)	-118 (-126)	-130 (-135)	-130 (-135			
> 1 to 2 GHz ⁴	-88 (-98)	-112 (-120)	-124 (-129)	-124 (-129			
> 2 to 3.2 GHz	-84 (-94)	-108 (-116)	-120 (-125)	-120 (-125			
> 3.2 to 10 GHz	-74 (-84)	-98 (-106)	-110 (-115)	-110 (-115			
> 10 to 20 GHz	-68 (-78)	-92 (-100)	-104 (-107)	-104 (-109			
> 20 to 40 GHz	-62 (-72)	· · · · ·	-104 (-107) -98 (-101)	-98 (-103)			
		-86 (-94)	. ,	. ,			
> 40 to 67 GHz	-56 (-66)	-80 (-88)	-92 (-95)	-92 (-97)			

1. Sub-harmonics are defined as Carrier Freq / N). Specifications are typical for sub-harmonics beyond specified frequency range (beyond 50 GHz for Option 567).

 Specifications are typical for spurs beyond specified frequency range (beyond 50 GHz for Option 567). Specifications apply for CW mode, without modulation. In ramp sweep mode (Option 007), performance is typical for offsets > 1 MHz.

- 3. Phase noise specifications are warranted from 15 to 35 $^{\circ}\mathrm{C}.$
- 4. Measurement at +10 dBm or maximum specified output power, whichever is less.

Option UNX: Absolute SS	B phase noise (dE	Bc∕Hz) (CW) ¹				
			Offset from carrie	r		
Frequency	1 Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz
250 kHz to 250 MHz ²	Spec (typ) -58 (-66)	Spec (typ) -87 (-94)	Spec (typ) -104 (-120)	Spec (typ) –121 (–128)	Spec (typ) -128 (-132)	Spec (typ) –130 (–133)
> 250 to 500 MHz ²	-61 (-72)	-88 (-98)	-108 (-118)	-126 (-132)	-132 (-136)	-136 (-141)
> 500 MHz to 1 GHz ²	-57 (-65)	-84 (-93)	-101 (-111)	-121 (-130)	-130 (-134)	-130 (-135)
> 1 to 2 GHz ²	-51 (-58)	-79 (-86)	-96 (-106)	-115 (-124)	-124 (-129)	-124 (-129)
> 2 to 3.2 GHz	-46 (-54)	-74 (-82)	-92 (-102)	-111 (-120)	-120 (-124)	-120 (-124)
> 3.2 to 10 GHz	-37 (-44)	-65 (-72)	-81 (-92)	-101 (-109)	-110 (-114)	—110 (—115)
> 10 to 20 GHz	-31 (-38)	-59 (-66)	-75 (-87)	-95 (-106)	-104 (-107)	-104 (-109)
> 20 to 40 GHz	-25 (-32)	-53 (-60)	-69 (-79)	-89 (-99)	-98 (-101)	-98 (-103)
> 40 to 67 GHz	-20 (-26)	-47 (-56)	-64 (-73)	-84 (-90)	-92 (-95)	-92 (-97)
Option UNX: Residual SSI	B phase noise (dB	8c/Hz) (CW) ¹				
			Offset from carrie	r		

Frequency	1 Hz Spec (typ)	10 Hz Spec (typ)	100 Hz Spec (typ)	1 kHz Spec (typ)	10 kHz Spec (typ)	100 kHz Spec (typ)
250 kHz to 250 MHz ²	(-94)	-100 (-107)	-110 (-118)	-120 (-126)	-128 (-132)	-130 (-133)
> 250 to 500 MHz ²	(—101)	-105 (-112)	-115 (-122)	-124 (-131)	-132 (-136)	-136 (-141)
> 500 MHz to 1 GHz ²	(-94)	-100 (-107)	-110 (-118)	-120 (-126)	-130 (-134)	-130 (-134)
> 1 to 2 GHz ²	(-89)	-96 (-101)	-104 (-112)	-114 (-120)	-124 (-129)	-124 (-129)
> 2 to 3.2 GHz	(-85)	-92 (-97)	-100 (-108)	-110 (-116)	-120 (-124)	-120 (-124)
> 3.2 to 10 GHz	(74)	(-87)	(-98)	(-106)	(-114)	(–115)

1. Phase noise specifications are warranted from 15 to 35 °C.

2. Measured at +10 dBm or maximum specified power, whichever is less.

Measured phase noise with E5500 and plotted without spurs

Standard phase noise

Option UNX phase noise

Residual phase noise

AM noise at 10 GHz

^{1.} Measured standard performance applies to units with serial numbers ending with 48050000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated November 5, 2007.

Residual FM				
	o 15 kHz bandwidth)			
CW mode	, , , , , , , , , , , , , , , , , , , ,	< N x 6 Hz (typ)		
Option UNX/U	JNR	$< N \times 4 Hz (typ)$		
Ramp sweep n		$< N \times 1 \text{ kHz}$ (typ)		
Broadband noi		(CW mode at +10 dBm	or maximum specifi	ed output
		power, whichever is I		
> 2.4 to 20 GH	Z	< -148 dBc/Hz (typ)		,
> 20 to 40 GHz	-	< -141 dBc/Hz (typ)		
> 40 GHz		<		
Measured RM	S jitter ¹			
	-			
Standard				
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	(μUI)	(fs)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	25	158
622 MHz	622 MB/s	1 kHz to 5 MHz	21	34
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	57	23
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	152	15
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	627	16
Option UNX		DM0		 .
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	(µUI)	(fs)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	23	151
622 MHz	622 MB/s	1 kHz to 5 MHz	19	30
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	56	22
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	152	15
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	626	16

1. Calculated from phase noise performance in CW mode only at +10 dBm. For other frequencies, data rate, or bandwidths, please contact your sales representative.

12

Frequency modulation¹

(Option UNT)

Phase modulation ⁵

(Option UNT)

Maximum deviation ²	Frequency	Maximum deviation
	250 kHz to 250 MHz	2 MHz
	> 250 to 500 MHz	1 MHz
	> 500 MHz to 1 GHz	2 MHz
	> 1 GHz to 2 GHz	4 MHz
	> 2 GHz to 3.2 GHz	8 MHz
	> 3.2 GHz to 10 GHz	16 MHz
	> 10 GHz to 20 GHz	32 MHz
	> 20 GHz to 40 GHz	64 MHz
	> 40 GHz to 67 GHz	128 MHz
Resolution	0.1% of deviation or 1 Hz,	whichever is greater
Deviation accuracy	< ± 3.5% of FM deviation	+ 20 Hz
	(1 kHz rate, deviations <	N x 800 kHz)
Modulation frequency resp	oonse ³ (at 100 kHz deviation)	
Path [coupling]	1 dB bandwidth	3 dB bandwidth (typ)
FM path 1 [DC]	DC to 100 kHz	DC to 10 MHz
FM path 2 [DC]	DC to 100 kHz	DC to 1 MHz
FM path 1 [AC]	20 Hz to 100 kHz	5 Hz to 10 MHz
FM path 2 [AC]	20 Hz to 100 kHz	5 Hz to 1 MHz
DC FM ⁴ carrier offset	±0.1% of set deviation +	
Distortion	< 1% (1 kHz rate, deviation	
Sensitivity	±1 V _{peak} for indicated dev	
Paths		d internally for composite
		nay be switched to any one o
	the modulation sources: I	Ext1, Ext2, internal1, internal
	The FM2 nath is limited t	o a maximum rate of 1 MHz.
	The This path to minted t	

Frequency	Normal BW m	ode High BW mode
250 kHz to 250 MHz	20 rad	2 rad
> 250 to 500 MHz	10 rad	1 rad
> 500 MHz to 1 GHz	20 rad	2 rad
> 1 GHz to 2 GHz	40 rad	4 rad
> 2 GHz to 3.2 GHz	80 rad	8 rad
> 3.2 GHz to 10 GHz	160 rad	16 rad
> 10 GHz to 20 GHz	320 rad	32 rad
> 20 GHz to 40 GHz	640 rad	64 rad
> 40 GHz to 67 GHz	1280 rad	128 rad
0.1% of set dev	viation	
< ±5% of devia	ation + 0.01 radiar	ns (1 kHz rate, normal
BW mode)		
response ⁷		
Normal BW m	ode H	igh BW mode
DC to 100 kHz	D	C to 1 MHz (typ) ⁸
Distortion < 1 % (1 kHz rate, Total Harmonic Distortion		ic Distortion (THD),
dev < N x 80 ra	ad, normal BW mo	ode)
±1 V _{peak} for indicated deviation		
Φ M1 and Φ M2 are summed internally for composite		
modulation. Eit	her path may be s	witched to any one of
the modulatior	sources: Ext1, Ex	<t2, internal1,="" internal2.<="" td=""></t2,>
	250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 10 GHz to 20 GHz > 20 GHz to 40 GHz > 20 GHz to 67 GHz 0.1% of set dev < ±5% of devia BW mode) response ⁷ Normal BW m DC to 100 kHz < 1 % (1 kHz ra dev < N x 80 ra ±1 V _{peak} for inc ΦM1 and ΦM2 modulation. Eit	250 kHz to 250 MHz 20 rad > 250 to 500 MHz 10 rad > 500 MHz to 1 GHz 20 rad > 1 GHz to 2 GHz 40 rad > 2 GHz to 3.2 GHz 80 rad > 3.2 GHz to 10 GHz 160 rad > 10 GHz to 20 GHz 320 rad > 20 GHz to 40 GHz 640 rad > 20 GHz to 67 GHz 1280 rad 0.1% of set deviation < ±5% of deviation + 0.01 radiar

1. Above 50 GHz, FM is useable; however performance is not warranted.

2. Through any combination of path1, path2, or path1 + path2.

3. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 10 MHz (FM1 path), and 50 kHz to 1 MHz (FM2 path).

- 4. At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of user calibration.
- 5. Above 50 GHz, phase modulation is useable; however performance is not warranted.
- 6. Through any combination of path1, path2, or path1 + path2.

7. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 1 MHz (high BW mode).

8. Path 1 is useable to 4 MHz for external inputs less than 0.3 V peak.

Amplitude modulation ¹ (part of Option UNT)	Depth Linear mode	Exponential (log) mode (downward modulation only)
(typical)	Maximum:		
	ALC On:	> 90%	> 20 dB
	ALC Off with Power Search ²	2	
	or ALC On with Deep AM ³ :	> 95 %	> 40 dB
	Settable:	0 to 100 %	0 to 40 dB
		(0 to 100 %/volt sensitivity)	(0 to 40 dB/volt sensitivity)
	Resolution:	0.1%	0.01 dB
	Accuracy (ALC On, 1kHz rate)	:	$< \pm (6\% \text{ of setting } + 1\%)$
	$< \pm (2\% \text{ of setting } +0.2 \text{dB})$		
	Ext sensitivity	\pm 1 V _{peak} for indicated depth	n –1 V for indicated depth
	Rates (3 dB bandwidth, 30% d	lepth)	
	DC Coupled	0 to 100 kHz	
	AC coupled	10 Hz to 100 kHz (useable to	o 1 MHz)
	Distortion (1 kHz rate, ALC Or	n, linear mode, Total Harmonic	: Distortion)
	30% AM	< 1.5%	
	60% AM	< 2%	
	Paths	AM1 and AM2 are summed	internally for composite
		modulation. Either path may	be switched to any one of
		the modulation sources: Ex	t1, Ext2, Internal1, Internal2.

14

^{1.} AM specifications are typical. For carrier frequencies below 2 MHz or above 50 GHz, AM is useable but not specified. Unless otherwise stated, specifications apply with ALC on and envelope peaks within ALC operating range (-20 dBm to maximum specified power, excluding step-attenuator setting).

^{2.} ALC Off is used for narrow pulse modulation and/or high AM depths, with envelope peaks below ALC operating range. Carrier power level will be accurate after a Power Search is executed.

^{3.} ALC On with Deep AM provides high AM depths together with closed-loop internal leveling. This mode can be used with a repetitive AM waveform (frequency > 10 Hz) with peaks > -5 dBm (nominal, excluding step-attenuator setting).

External modulation inputs

(Ext1 & Ext2) (Option UNT)

Internal modulation source (Option UNT)

Modulation types	AM, FM, and Φ M
Input impedance	50 or 600 (nom) switched
High/low indicator	
(100 Hz to 10 MHz BW,	Activated when input level error exceeds 3% (nom)
ac coupled inputs only)	

Dual function generators provides two independent signals (internal1 and internal2) for use with AM, FM, ΦM , or LF Out.

Waveforms	Sine, square, positive ramp, negative ramp, triangle,
	Gaussian noise, uniform noise, swept sine, dual sine ¹
Rate range	
Sine	0.5 Hz to 1 MHz
Square, ramp, triangle	0.5 Hz to 100 kHz
Resolution	0.5 Hz
Accuracy	Same as timebase
LF Out	
Output	Internal1 or internal2. Also provides monitoring of
	internal1or internal2 when used for AM, FM, or Φ M.
Amplitude 0 to 3 V_{peak} , (nom) into 50 Ω	
Output impedance	50 Ω (nom)
Swept sine mode: (frequen	cy, phase continuous)
Operating modes	Triggered or continuous sweeps
Frequency range	1 Hz to 1 MHz
Sweep rate	0.5 Hz to 100 kHz sweeps/s, equivalent to sweep times
	10 us to 2 s
Resolution	0.5 Hz (0.5 sweep/s)

1. Internal2 is not available when using swept sine or dual sine modes.

On/Off ratio80 dB (typ)80 dBRise/Fall times (Tr. Tf)100 ns (typ)6 ns (typ)Minimum pulse width100 ns (typ)6 ns (typ)Internally leveled2 us1 usLevel hold (ALC off with power search)0.5 us0.15 usRepetition frequency10 Hz to 250 kHz10 Hz to 500 kHzInternally leveled10 Hz to 250 kHz10 Hz to 500 kHzLevel hold (ALC off with power search) dc to 1 MHzdc to 3 MHzLevel accuracy (relative to CW)10 Hz to 50 dBInternally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dBLevel hold (ALC off with power search)±0.5 dBUvidth compression±50 ns (typ)Width compression±50 ns (typ)(RF width relative to video out)10 mom)Video delay (ext input to video)50 ns (nom)RF delay (video to RF output)270 ns (nom)Pulse overshoot<10% (typ)Input level+1 V _{peak} = RF OnInput impedance50 Ω (nom)50 Ω (nom)50 Ω (nom)Narrow pulse modulation ^{1, 2} 10 MHz to 3.2 GHzAbove 3.2 GHz0n/Off ratio80 dB80 dB	Pulse modulation ^{1, 2}		500 MHz to 3.2 GHz	Above 3.2 GHz
Nise? Fail times (1, 11)Too its (typ)O its (typ)Minimum pulse width Internally leveled2 us1 usLevel hold (ALC off with power search)0.5 us0.15 usRepetition frequency Internally leveled10 Hz to 250 kHz10 Hz to 500 kHzLevel hold (ALC off with power search)dc to 1 MHzdc to 3 MHzLevel accuracy (relative to CW) Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB±0.5 dB (typ)Width compression±50 ns (typ)±5 ns (typ)(RF width relative to video out)Width cempression±50 ns (typ)Video feed-through ³ <200 mv (typ)		On/Off ratio	80 dB (typ)	80 dB
Minimum pulse width Internally leveled2 us1 us Level hold (ALC off with power search)0.5 us0.15 usRepetition frequency Internally leveled10 Hz to 250 kHz10 Hz to 500 kHz10 Hz to 500 kHzLevel hold (ALC off with power search)dc to 1 MHzdc to 3 MHzLevel hold (ALC off with power search)dc to 1 MHzdc to 3 MHzLevel accuracy (relative to CW) Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB (typ)±0.5 dB (typ)Width compression±50 ns (typ)±5 ns (typ)Width cells te video out)Width relative to video out)Widto feed-through ³ Video feed-through ³ < 200 mv (typ)	(Uption UNU)	Rise/Fall times (Tr, Tf)	100 ns (typ)	6 ns (typ)
Level hold (ALC off with power search)0.5 us0.15 usRepetition frequency Internally leveled10 Hz to 250 kHz10 Hz to 500 kHzLevel hold (ALC off with power search)dc to 1 MHzdc to 3 MHzLevel accuracy (relative to CW) Internally leveled±0.5 dB±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB±0.5 dB (typ)Width compression±50 ns (typ)±5 ns (typ)(RF width relative to video out)Wide feed-through ³ < 200 mv (typ)		Minimum pulse width	,	,
Repetition frequency Internally leveled10 Hz to 250 kHz to 3 MHzLevel hold (ALC off with power search)10 Hz to 250 kHz dc to 1 MHz10 Hz to 500 kHz dc to 3 MHzLevel hold (ALC off with power search)±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB±0.5 dBWidth compression±50 ns (typ)±5 ns (typ)Width compression±50 ns (typ)±5 ns (typ)(RF width relative to video out)Wideo feed-through ³ <200 mv (typ)		Internally leveled	2 us	1 us
Internally leveled10 Hz to 250 kHz10 Hz to 500 kHzLevel hold (ALC off with power search)dc to 1 MHzdc to 3 MHzLevel accuracy (relative to CW) Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB±0.5 dB (typ)Width compression±50 ns (typ)±5 ns (typ)Width ceded trive to video out)Width relative to video out)±50 ns (typ)Video feed-through ³ < 200 mv (typ)		Level hold (ALC off with power search)	0.5 us	0.15 us
Level hold (ALC off with power search) dc to 1 MHzdc to 3 MHzLevel accuracy (relative to CW) Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB (typ)±0.5 dB (typ)Width compression±50 ns (typ)±5 ns (typ)(RF width relative to video out)Width celefter to video out)Wideo feed-through ³ Video feed-through ³ < 200 mv (typ)		Repetition frequency		
Level accuracy (relative to CW) Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB (typ)±0.5 dB (typ)Width compression±50 ns (typ)±5 ns (typ)(RF width relative to video out)Wide feed-through ³ < 200 mv (typ)		Internally leveled	10 Hz to 250 kHz	10 Hz to 500 kHz
Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB (typ)Width compression±50 ns (typ)Width compression±50 ns (typ)(RF width relative to video out)Video feed-through ³ < 200 mv (typ)		Level hold (ALC off with power search)	dc to 1 MHz	dc to 3 MHz
Internally leveled±0.5 dB±0.5 dBLevel hold (ALC off with power search)±0.5 dB (typ)Width compression±50 ns (typ)Width compression±50 ns (typ)(RF width relative to video out)Video feed-through ³ < 200 mv (typ)		Level accuracy (relative to CW)		
Width compression (RF width relative to video out)±50 ns (typ)±5 ns (typ)Video feed-through3< 200 mv (typ)		Internally leveled	±0.5 dB	±0.5 dB
(RF width relative to video out) Video feed-through ³ < 200 mv (typ)		Level hold (ALC off with power search)	±0.5 dB (typ)	±0.5 dB (typ)
Video feed-through³< 200 mv (typ)< 2 mv (typ)Video delay (ext input to video)50 ns (nom)50 ns (nom)RF delay (video to RF output)270 ns (nom)35 ns (nom)Pulse overshoot< 10% (typ)		Width compression	±50 ns (typ)	±5 ns (typ)
Video delay (ext input to video)50 ns (nom)50 ns (nom)RF delay (video to RF output)270 ns (nom)35 ns (nom)Pulse overshoot< 10% (typ)		(RF width relative to video out)		
RF delay (video to RF output)270 ns (nom)35 ns (nom)Pulse overshoot< 10% (typ)		Video feed-through ³	< 200 mv (typ)	< 2 mv (typ)
Pulse overshoot < 10% (typ)		Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
Input level+1 Vpeak = RF On+1 Vpeak = RF OnInput impedance50 Ω (nom)50 Ω (nom)Narrow pulse modulation ^{1, 2} 10 MHz to 3.2 GHzAbove 3.2 GHz(Option UNW)On/Off ratio80 dB80 dB		RF delay (video to RF output)	270 ns (nom)	35 ns (nom)
Input impedance50 Ω (nom)50 Ω (nom)Narrow pulse modulation1, 2 (Option UNW)10 MHz to 3.2 GHzAbove 3.2 GHzOn/Off ratio80 dB80 dB		Pulse overshoot	< 10% (typ)	< 10% (typ)
Narrow pulse modulation1, 210 MHz to 3.2 GHzAbove 3.2 GHz(Option UNW)0n/Off ratio80 dB80 dB		Input level	+1 V _{peak} = RF On	+1 V _{peak} = RF On
(Option UNW) On/Off ratio 80 dB 80 dB		Input impedance	50 Ω (nom)	50 Ω (nom)
(Option UNW) On/Off ratio 80 dB 80 dB	Narrow pulse modulation ^{1, 2}		10 MUz to 2 2 CU-	
		On /Off ratio		
Pice / Fall times / Tr Tf) 10 no /9 no typical) 10 no /6 no typical		Rise/Fall times (Tr, Tf)	** **	
Rise/Fall times (Tr, Tf) 10 ns (8 ns typical) 10 ns (6 ns typical) Minimum pulse width			to its (o its typical)	10 ns (6 ns typical)

Level hold (ALC off with power search) 20 ns

Level hold (ALC off with power search) dc to 5 MHz

Level hold (ALC off with power search) ±1.3 dB (typ)

Internally leveled

Internally leveled

Internally leveled

Repetition frequency

Level accuracy (relative to CW)

1 us

±0.5 dB

10 Hz to 500 kHz

1 us

20 ns

10 Hz to 500 kHz

±0.5 dB (0.15 dB typical)

dc to 10 MHz

 $\pm 0.5 \text{ dB}$ (typ)

1. With ALC off, specs apply after the execution of power search. Specifications apply with Atten Hold Off (default mode for instruments with attenuator), or ALC level between -5 and +10 dBm or maximum specific power, whichever is lower. Above 50 GHz, pulse modulation is useable; however performance is not warranted.

- 2. Power search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing power search, RF power will be present for typically 10 to 50 ms; the step attenuator (Option 1E1) can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range.
- 3. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

10 MHz to 3.2 GHz	Above 3.2 GHz
±5 ns (typ)	±5 ns (typ)
< 125 mv (typ)	< 2 mv (typ)
50 ns (nom)	50 ns (nom)
45 ns (nom)	35 ns (nom)
< 15% (typ)	< 10% (typ)
+1 V _{peak} = RF On	+1 V _{peak} = RF On
50 Ω (nom)	50 Ω (nom)
	±5 ns (typ) < 125 mv (typ) 50 ns (nom) 45 ns (nom) < 15% (typ) +1 V _{peak} = RF On

Internal pulse generator

(Option UNU or UNW)

Modes	Free-run, triggered, triggered with delay,
	doublet, and gated. Triggered with delay,
	doublet, and gated require external
	trigger source.
Period (PRI) (Tp)	70 ns to 42 s
	(Repetition frequency: 0.024 Hz to
	14.28 MHz)
Pulse width (Tw)	10 ns to 42 s
Delay (Td)	
Free-run mode	0 to ±42 s
Triggered with delay and doublet modes	75 ns to 42s with ±10 ns jitter
Resolution	10 ns (width, delay, and PRI)

Td Video delay (variable) Tw Video pulse width (variable) Tp Pulse period (variable) Tm RF delay Trf RF pulse width Tf RF pulse fall time Tr RF pulse rise time Vor Pulse overshoot Vf Video feedthrough

Simultaneous modulation

All modulation types (FM, AM, Φ M, and pulse modulations) may be simultaneously enabled except: FM with Φ M, and linear AM with exponential AM. AM, FM, and Φ M can sum simultaneous inputs from any two sources (Ext1, Ext2, internal1, or internal2). Any given source (Ext1, Ext2, internal1, or internal2) may be routed to only one activated modulation type.

1. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

Remote programming

Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface.
Control languages	SCPI version 1997.0. Completely code compatible with previous PSG signal generator models: • E8241A • E8244A • E8251A • E8254A • E8254C • E8257C
	The E8257D will emulate the applicable commands for the following Agilent signal generators, providing general compatibility with ATE systems: • 8340-series (8340/41B) • 8360-series (836xxB/L) • 83700-series (837xxB) • 8662A/63A
IEEE-488 functions	SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2.
ISO compliant	This family of signal generators is manufactured in an ISO-9001 registered facility in concurrence with Agilent commitment to quality.
Agilent IO Libraries	Agilent's IO Library Suite ships with the E8257D to help you quickly establish an error-free connection between your PC and instruments – regardless of the vendor. It provides robust instrument control and works with the software development environment you choose.

General specifications

Devery very incomente	
Power requirements	90 to 132 VAC 47 to 64 Hz or 365 to 435 Hz; or 195 to 267 VAC 47 to 64 Hz, (automatically selected) < 250 W typical, 300 W maximum.
Operating temperature range	0 to 55 °C
Storage temperature range ¹	-40 to 70 °C
Altitude	< 4,572 m (15,000 ft.)
Environmental testing	Samples of this product have been tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude, and power line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3. ²
EMC	Meets the conducted and radiated interference and immunity requirements of IEC/EN 61326-1. Meets radiated emission requirements of CISPR Pub 11/1997 Group 1 class A.
Storage registers	Memory is shared by instrument states and sweep list files. There is 14 MB of flash memory available in the E8257D PSG. Depending on how the memory is used, a maximum of 1000 instrument states can be saved.
Security	Display blanking Memory clearing functions (see Application Note <i>Security of Agilent Signal</i> <i>Generators Issues and Solutions</i> , literature number 5989-1091EN)
Compatibility	Agilent 83550 Series Millimeter Heads and OML millimeter source modules. Agilent 8757D scalar network analyzers. Agilent EPM Series power meters.
Self-test	Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test.
Weight	< 22 kg (48 lb.) net, < 30 kg (68 lb.) shipping
Dimensions	178 mm H x 426 mm W x 515 mm D (7" H x 16.8" W x 20.3" D in.)
Recommended calibration cycle	24 months

Storage below -20 °C instrument states may be lost.
 As is the case with all signal generation equipment, phase noise specifications are not warranted in a vibrating environment.

Input/Output Descriptions

Front panel connectors

Rear panel connectors

(all connectors are BNC female unless otherwise noted.)¹

(All connectors are BNC female unless otherwise noted.)¹

RF output	Output impedance 50 Ω (nom)
Option 520	Precision APC-3.5 male, or Type-N with Option 1ED
Options 532, 540 and 550	Precision 2.4 mm male; plus 2.4 – 2.4 mm and
	2.4 – 2.9 mm female adapters
Option 567	Precision 1.85 mm male; plus 1.85 – 1.85 mm and
	2.4 – 2.9 mm female adapters
ALC input	Used for negative external detector leveling. Nominal
	input impedance 120 k Ω , damage level ±15 V.
LF output	Outputs the internally generated LF source. Nominal
	output impedance 50 Ω .
External input 1	Drives either AM, FM, or Φ M. Nominal input impedance
	50 or 600 $\Omega,$ damage levels are 5 V_{rms} and 10 $V_{peak}.$
External input 2	Drives either AM, FM, or Φ M. Nominal input impedance
	50 or 600 $\Omega,$ damage levels are 5 V_{rms} and 10 $V_{peak}.$
Pulse/trigger gate input	Accepts input signal for external fast pulse modulation
	Also accepts external trigger pulse input for internal
	pulse modulation. Nominal impedance 50 Ω . Damage
	levels are 5 V _{rms} and 10 V _{peak} .
Pulse video out	Outputs a signal that follows the RF output in all pulse
	modes. TTL-level compatible, nominal source
	impedance 50 Ω .
Pulse sync out	Outputs a synchronizing pulse, nominally 50 ns width
	during internal and triggered pulse modulation.
	TTL-level compatible, nominal source impedance 50 Ω
Auxiliary interface (dual mode)	Used for RS-232 serial communication and for
	master/slave source synchronization.
	(9-pin subminiature female connector).
GPIB	Allows communication with compatible devices
LAN 10 Mile insut	Allows 10BaseT LAN communication
10 MHz input	Accepts an external reference (timebase) input (at 1,
	2, 2.5, 5, 10 MHz for standard and 10 MHz only for
	Option UNX and UNR)
	Nominal input impedance 50 Ω
10 MHz output	Nominal input impedance 50 Ω Damage levels > +10 dBm
10 MHz output	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nomina
10 MHz output	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nomina output impedance 50 Ω. Nominal output power +8 dBm
10 MHz output Sweep output (dual mode)	Nominal input impedance 50 ΩDamage levels > +10 dBmOutputs internal or external reference signal. Nominaoutput impedance 50 Ω. Nominal output power +8 dBmSupplies a voltage proportional to the RF power or
	Nominal input impedance 50 ΩDamage levels > +10 dBmOutputs internal or external reference signal. Nominal output impedance 50 Ω. Nominal output power +8 dBmSupplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nominal output impedance 50 Ω. Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep,
	Nominal input impedance 50 ΩDamage levels > +10 dBmOutputs internal or external reference signal. Nominal output impedance 50 Ω. Nominal output power +8 dBmSupplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nomina output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width.
	Nominal input impedance 50 ΩDamage levels > +10 dBmOutputs internal or external reference signal. Nominal output impedance 50 Ω. Nominal output power +8 dBmSupplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width.During CW operation, supplies a voltage proportional
	Nominal input impedance 50 ΩDamage levels > +10 dBmOutputs internal or external reference signal. Nominal output impedance 50 Ω. Nominal output power +8 dBmSupplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width.During CW operation, supplies a voltage proportional
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nomina output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency.
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nomina output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency. When connected to an Agilent 8757D scalar network
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nomina output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency. When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nominal output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency. When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nom) across a ramp
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nominal output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency. When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nom) across a ramp (analog) sweep. Number of pulses can be set form
	Nominal input impedance 50 Ω Damage levels > +10 dBm Outputs internal or external reference signal. Nominal output impedance 50 Ω . Nominal output power +8 dBm Supplies a voltage proportional to the RF power or frequency sweep ranging form 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width. During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency. When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nom) across a ramp

1. Digital inputs and output are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

Stop sweep In/Out	Open-collector, TTL-compatible input/output. In
ramp	sweep operation, provides low level (nominally 0 V)
	during sweep retrace and bandcross intervals, and
	high level during the forward portion of the sweep.
	Sweep will stop when grounded externally, sweep
	will resume when allowed to go high.
Trigger output (dual mode)	Outputs a TTL signal. High at start of dwell, or when
	waiting for point trigger; low when dwell is over or
	point trigger is received. In ramp sweep mode, pro-
vides	1601 equally-spaced 1us pulses (nom) across a
	ramp sweep. When using LF Out, provides 2 us pulse
	at start of LF sweep.
Trigger input	Accepts 3.3V CMOS signal for triggering point-to-
	point in manual sweep mode, or to trigger start of
	LF sweep. Damage levels \geq +10 V or \leq -4 V.
Source module interface	Provides power and leveling connections to the
	millimeter source modules.
Source settled	Provides an output trigger that indicates when the
	signal generator has settled to a new frequency or
	power level. High indicates source not settled, Low
	indicates source settled.
Z-axis Blank/Markers	During ramp sweep, supplies +5 V (nom) level
	during retrace and bandswitch intervals.
	Supplies –5 V (nom) level when the RF frequency
	is at a marker frequency.
10 MHz EFC	(Option UNR/UNX only) Accepts an external DC
	voltage, ranging from -5 V to $+5$ V, for electronic
	frequency control (EFC) of the internal 10 MHz
	reference oscillator. This voltage inversely tunes the
	oscillator about its center frequency approximately
	-0.07 ppm/V. The nominal input impedance is
	greater than 1 M Ω .
1 GHz Out	(Option UNX only) Low noise 1 GHz reference output
	signal, approximately +5 dBm (nom).

Options, Accessories, and Related Products

Model/option	Description	
E8257D-520	Frequency range from 250 kHz to 20 GHz	
E8257D-532	Frequency range from 250 kHz to 31.8 GHz	
E8257D-540	Frequency range from 250 kHz to 40 GHz	
E8257D-540	Frequency range from 250 kHz to 50 GHz	
E8257D-567	Frequency range from 250 kHz to 67 GHz	
E8257D-007	Analog ramp sweep	
E8257D-UNX	Ultra low phase noise	
E8257D-UNT	AM, FM, phase modulation, and LF output	
E8257D-UNU	Pulse modulation	
E8257D-UNW ¹	Narrow pulse modulation	
E8257D-1EA	High output power	
E8257D-1E1	Step attenuator	
E8257D-1ED	Type-N (f) RF output connector (Option 520 only)	
E8257D-1EH	Improved harmonics below 2 GHz	
E8257D-1EM	Moves all front panel connectors to the rear panel	
E8257D-1CN	Front handle kit	
E8257D-1CM	Rackmount flange kit	
E8257D-1CP	Rackmount flange and front handle kit	
E8257D-C09	Move all front panel connectors to the rear panel except for the RF	
	output connector	
E8257D-HSM ²	Scan modulation (20 GHz model only)	
E8257D-HAR ⁴	Optimize phase noise < 500 MHz carrier	
E8257D-H1S	1 GHz external frequency reference input and output	
E8257D-HCC	Connections for phase coherency > 250 MHz	
E8257D-H30 ¹	Internal mixer for up conversion capability in the 20, 31.8, and	
	40 GHz models	
E8257D-H60 ¹	Internal mixer for up conversion capability in the 50 and 67 GHz models	
E8257D-UK6	Commercial calibration certificate and test data	
E8257D-CD1	CD-ROM containing the English documentation set	
E8257D-ABA	Printed copy of the English documentation set	
E8257D-0BW	Printed copy of the assembly-level service guide	
8120-8806	Master/slave interface cable	
9211-2656	Transit case	
9211-7481	Transit case with wheels	
E8257DS15 ³	OML Inc. Millimeter source module, 50 GHz to 75 GHz at +8 dBm	
E8257DS12 ³	OML Inc. Millimeter source module, 60 GHz to 90 GHz at +6 dBm	
E8257DS10 ³	OML Inc. Millimeter source module, 75 GHz to 110 GHz at +5 dBm	
E8257DS08 ³	OML Inc. Millimeter source module, 90 GHz to 140 GHz at –2 dBm	
E8257DS06 ³	OML Inc. Millimeter source module, 110 GHz to 170 GHz at –6 dBm	
E8257DS05 ³	OML Inc. Millimeter source module, 140 GHz to 220 GHz at –12 dBm	
E8257DS03 ³	OML Inc. Millimeter source module, 220 GHz to 325 GHz at –25 dBm	

^{1.} Must be ordered with Option 1E1.

 $[\]ensuremath{\mathbf{2}}.$ Must be ordered with Option UNT and not available with Option UNU.

^{3.} Millimeter source module a product of Oleson Microwave Labs, Inc. and must be ordered with Option 1EA.

^{4.} Must be ordered with Options UNX and 1EH.

Web Resources

For additional information, visit: www.agilent.com/find/psg

For more information about renting, leasing or financing Agilent's latest technology, visit: www.agilent.com/find/buy/alternatives

For more accessory information, visit: www.agilent.com/find/accessories

For additional description of Agilent's IO Libraries Suite features and installation requirements, please go to: www.agilent.com/find/iosuite/database

Related Agilent Literature

Agilent PSG Signal Generators Brochure, Literature number 5989-1324EN

E8257D PSG Signal Generators Configuration Guide, Literature number 5989-1325EN

E8267D PSG Vector Signal Generator Data Sheet, Literature number 5989-0697EN

E8267D PSG Vector Signal Generator Configuration Guide, Literature number 5989-1326EN

Millimeter Wave Source Modules from OML, Inc. for the Agilent PSG Signal Generators Technical Overview, Literature number 5989-2923EN

Security of Agilent Signal Generators Issues and Solutions, Literature number 5989-1091EN

🔀 Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

🕣 Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas Canada (877) 894-4414 Latin America 305 269 7500 **United States** (800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	0820 87 44 11	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 15 15	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	01805 24 6333**	
	**0.14 €/minute	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		
Revised: March 27, 2008		

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008 Printed in USA, June 23, 2008 5989-0698EN

